












AN ELEMENTARY TEEATISE

FOURIER S SERIES

SPHERICAL, CYLINDRICAL, AND ELLIPSOIDAL

HARMONICS,

WITH

APPLICATIONS TO PROBLEMS IN MATHEMATICAL PHYSICS.

BY

WILLIAM ELWOOD BYERLY, PH.D.,

DOVER PUBLICATIONS, INC.
New York, New York



Copyright, 1893,

by William Elwood Byerly.

This new Dover edition first published in 1959
is an unabridged and unaltered republication
of the last edition. It is reproduced by per
mission of Ginn and Company, the original

publishers of this text.

61

.3

I:

(

MATH-STAT.

Library of Congress Catalog Card Number: 59-3787

Manufactured in the United States of America

Dover Publications, Inc.

180 Varick Street

New York 14, New York



PREFACE.
LIBRARY

ABOUT ten years ago I gave a course of lectures on Trigonometric Series,

following closely the treatment of that subject in Riemann s &quot;Partielle

Differentialgleichungen,&quot; to accompany a short course on The Potential

Function, given by Professor B. 0. Peirce.

My course has been gradually modified and extended until it has become an

introduction to Spherical Harmonics and Bessel s and Lame s Functions.

Two years ago my lecture notes were lithographed by my class for their

own- use and were found so convenient that I have prepared them for

publication, hoping that they may prove useful to others as well as to my
own students. Meanwhile, Professor Peirce has published his lectures on

&quot;The Newtonian Potential Function&quot; (Boston, Ginn & Co.), and the two

sets of lectures form a course (Math. 10) given regularly at Harvard, and

intended as a partial introduction to modern Mathematical Physics.

Students taking this course are supposed to be familiar with so much of the

infinitesimal calculus as is contained in my &quot; Differential Calculus &quot;

(Boston,

Ginn & Co.) and my &quot;

Integral Calculus
&quot;

(second edition, same publishers),

to which I refer in the present book as &quot; Dif. Cal.&quot; and &quot; Int. Gal.&quot; Here,

as in the &quot;

Calculus,&quot; I speak of a &quot; derivative &quot; rather than a &quot; differential
^

coefficient,&quot; and use the notation Dx instead of r- for &quot;

partial derivative with
ox

respect to x.&quot;

The course was at first, as I have said, an exposition of Riemann s &quot;Partielle

Differentialgleichungen.&quot; In extending it, I drew largely from Ferrer s

&quot;

Spherical Harmonics &quot; and Heine s &quot;

Kugelfunctionen,&quot; and was somewhat

indebted to Todhunter
(&quot;Functions

of Laplace, Bessel, and
Lame-&quot;), Lord

Rayleigh (&quot; Theory of Sound
&quot;),

and Forsyth (&quot;
Differential Equations &quot;).

In preparing the notes for publication, I have been greatly aided by the

criticisms and suggestions of my colleagues, Professor B. 0. Peirce and Dr.

Maxime Bocher, and the latter has kindly contributed the brief historical

sketch contained in Chapter IX.

W. E. BYERLY.

CAMBRIDGE, MASS., Sept. 1893.
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CHAPTER I.

INTRODUCTION.

1. In many important problems in mathematical physics we are obliged

to deal with partial differential equations of a comparatively simple form.

For example, in the Analytical Theory of Heat we have for the change of

temperature of any solid due to the flow of heat within the solid, the equation

D
t
u = a\D*u + D*u + D,* [i]

where u represents the temperature at any point of the solid and t the time.

In the simplest case, that of a slab of infinite extent with parallel plane

faces, where the temperature can be regarded as a function of one coordinate,

[i] reduces to

D
t
u = a*Du, [n]

a form of considerable importance in the consideration of the problem of the

cooling of the earth s crust.

In the problem of the permanent state of temperatures in a thin rectangular

plate, the equation [i] becomes

D*u + D*u = 0. [in]

In polar or spherical coordinates [i] is less simple, it is

D,U =

In the case where the solid in question is a sphere and the temperature

at any point depends merely on the distance of the point from the centre

[iv] reduces to ^ (ru}
=^^^ . [v]

In cylindrical coordinates [i] becomes

D
t
u = a*[D?u + -Dru+-tD*u + Dfu] . [vi]

In considering the flow of heat in a cylinder when the temperature at

any point depends merely on the distance r of the point from the axis

fvi&quot;! becomes
, 1 .

L J D
t
u = a\D}u -f - Dr u) . [vn]

* For the sake of brevity we shall often use the symbol V2 for the operation Dx
2 +DV

* +D2
2

;

and with this notation equation [i] would be written Dt u = a 2 V2 u.
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In Acoustics in several problems we have the equation

D*y = a*D2y&amp;gt;, [vm]

for instance, in considering the transverse or the longitudinal vibrations of a

stretched elastic string, or the transmission of plane sound waves through

the air.

If in considering the transverse vibrations of a stretched string we take

account of the resistance of the air [vm] is replaced by

D*y + 2kD
ty = a*Dy. [ix]

In dealing with the vibrations of a stretched elastic membrane, we have the

equation
Dfz = c\D2* + D z), [x]

or in cylindrical coordinates

+
*
Dr z + D}z). [xi]

In the theory of Potential we constantly meet Laplace s Equation

D*V+ D*V+ D?V= [xn]

or Vr=0
which in spherical coordinates becomes

+ ^(sinflAF) + D^r = 0, [xn,]

and in cylindrical coordinates

D*V+
l-DrV+

^2&amp;gt;}r
+ 2&amp;gt;ir=0. [xiv]

In curvilinear coordinates it is

St^+^tAy)]- [xvl

where /i (*,y,*)
=

PI , /2 fry,*) =pz, fs fry,*)
=

p*

represent a set of surfaces which cut one another at right angles, no matter

what values are given to pi , p2 ,
a-ncl p3 ;

and where

V= (ArP.) + (^P.)*+ (Apa) ,

and, of course, must be expressed in terms of pi, pt, and p8 -

If it happens that V2
pi
= 0, V2

p2
= 0, and V2

p3
= 0, then Laplace s

Equation [xv] assumes the very simple form

= 0. [xvi]
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2. A differential equation is an equation containing derivatives or differen

tials with or without the primitive variables from which they are derived.

The general solution of a differential equation is the equation expressing the

most general relation between the primitive variables which is consistent with

the given differential equation and which does not involve differentials or

derivatives. A general solution will always contain arbitrary (i. e., undeter

mined) constants or arbitrary functions.

A particular solution of a differential equation is a relation between the

primitive variables which is consistent with the given differential equation,

but which is less general than the general solution, although included in it.

Theoretically, every particular solution can be obtained from the general

solution by substituting in the general solution particular values for the arbi

trary constants or particular functions for the arbitrary functions; but in

practice it is often easy to obtain particular solutions directly from the differ

ential equation when it would be difficult or impossible to obtain the general

solution.

3. If a problem requiring for its solution the solving of a differential equa
tion is determinate, there must always be given in addition to the differential

equation enough outside conditions for the determination of all the arbitrary

constants or arbitrary functions that enter into the general solution of the

equation; and in dealing with such a problem, if the differential equation can

be readily solved the natural method of procedure is to obtain its general

solution, and then to determine the constants or functions by the aid of the

given conditions.

It often happens, however, that the general solution of the differential equa
tion in question cannot be obtained, and then, since the problem if determinate

will be solved if by any means a solution of the equation can be found which

will also satisfy the given outside conditions, it is worth while to try to get

particular solutions and so to combine them as to form a result which shall

satisfy the given conditions without ceasing to satisfy the differential equation.

4. A differential equation is linear when it would be of the first degree if

the dependent variable and all its derivatives were regarded as algebraic

unknown quantities. If it is linear and contains no term which does not

involve the dependent variable or one of its derivatives, it is said to be linear

and homogeneous.

All the differential equations collected in Art. 1 are linear and homogeneous.

5. If & value of the dependent variable has been found which satisfies a

given homogeneous, linear, differential equation, the product formed by multiply

ing this value by any constant will also be a value of the dependent variable

which will satisfy the equation.
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For if all the terms of the given equation are transposed to the first mem
ber, the substitution of the first-named value must reduce that member to

zero; substituting the second value is equivalent to multiplying each term of

the result of the first substitution by the same constant factor, which there

fore may be taken out as a factor of the whole first member. The remaining
factor being zero, the product is zero and the equation is satisfied.

If several values of the dependent variable have been found each of which

satisfies the given differential equation, their sum will satisfy the equation ; for

if the sum of the values in question is substituted in the equation each term

of the sum will give rise to a set of terms which must be equal to zero, and

therefore the sum of these sets must be zero.

6. It is generally possible to get by some simple device particular solutions

of such differential equations as those we have collected in Art. 1. The

object of the branch of mathematics with which we are about to deal is to

find methods of so combining these particular solutions as to satisfy any given

conditions which are consistent with the nature of the problem in question.

This often requires us to be able to develop any given function of the varia

bles which enter into the expression of these conditions in terms of noi-mal

forms suited to the problem with which we happen to be dealing, and sug

gested by the form of particular solution that we are able to obtain for the

differential equation.

These normal forms are frequently sines and cosines, but they are often

much more complicated functions known as Legendrds Coefficients, or Zonal

Harmonics ; Laplace s Coefficients, or Spherical Harmonics ; BesseVs Functions,

or Cylindrical Harmonics ; Lame s functions, or Ellipsoidal Harmonics, &c.

7. As an illustration, let us take Fourier s problem of the permanent state

of temperatures in a thin rectangular plate of breadth TT and of infinite length

whose faces are impervious to heat. We shall suppose that the two long

edges of the plate are kept at the constant temperature zefo, that one of the

short edges, which we shall call the base of the plate, is kept at the tempera

ture unity, and that the temperatures of points in the plate decrease indefi

nitely as we recede from the base; we shall attempt to find the temperature

at any point of the plate.

Let us take the base as the axis of X and one end of the base as the origin.

Then to solve the problem we are to find the temperature u of any point from

the equation D , u + J}J U
= Q [m] Art. 1

subject to the conditions u = when x = (1)

u = &quot; x TT (2)

u = &quot;

y = oo (3)

u = l &quot;

y = 0. (4)
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We shall begin by getting a particular solution of [in], and we shall use

a device which always succeeds when the equation is linear and homogeneous
and has constant coefficients.

Assume * u = eay + f*x
,
where a and (3 are constants, substitute in [in] and

divide by e
av +

P*, and we have a2
-f /3

2 = 0. If, then, this condition is satis

fied u = eay + &x is a solution.

Hence u = eay
* *&quot;*

f is a solution of [in], no matter what value may be

given to a.

This form is objectionable, since it involves an imaginary. We can, how

ever, readily improve it.

Take u = eav eaxi
,
a solution of [in], and u = eP-ver**, another solution

of [in]; add these values of u and divide the sum by 2 and we have
e*v cos ax.

(v. Int. Cal. Art. 35, [1].) Therefore by Art. 5

u = eay cos ax
(5)

is a solution of [in]. Take w = ea*ea!ri and u = eaye- axi
, subtract the

second value of u from the first and divide by 2i and we have eay sin ax.

(v.
Int. Cal. Art. 35, [2]). Therefore by Art. 5

u = eav sin ax
(6)

is a solution of [HI].

Let us now see if out of these particular solutions we can build up a solu

tion which will satisfy the conditions (1), (2), (3), and
(4).

Consider u = e^ sin ax .

(6)

It is zero when x = for all values of a. It is zero when x = IT if a is a

whole number. It is zero when y = oo if a is negative. If, then, we write

u equal to a sum of terms of the form Ae~ mv sin mx, where m is a positive

integer, we shall have a solution of [in] which satisfies conditions
(1), (2)

and (3). Let this solution be

u = A^e~ v sin x + Az e~ 2v sin 2x + As e~ 3y sin Sx+A^e-^ sin 4x -\
----

(7)

AI, Az ,
AS) A4 , &c., being undetermined constants.

When y = (7) reduces to

u = AI sin x + A2 sin 2x -f A8 sin 3x -j- .44 sin 4# -f . (8)

If now it is possible to develop unity into a series of the form
(8), our

problem is solved; we have only to substitute the coefficients of that series for

AU A2 ,
A8,

&c. in
(7).

*. This assumption must be regarded as purely tentative. It must be tested by substi

tuting in the equation, and is justified if it leads to a solution.

t We shall regularly use the symbol i for V l.
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It will be proved later that

4/1 1 1 x
1 = I sin x -f- Q- sin 3# + F sm &r 4- =r sin 7a; 4- I

ir\ o o ( f

for all values of x between and TT; hence our required solution is

4 i- 1 1 1 -i

u = e~ y sm x + o &~ v sin 3x -|- ~- e~ oy sin 5cc + ^ e~ 7y sin Ix -\- (9)

for this satisfies the differential equation and all the given conditions.

If the given temperature of the base of the plate instead of being unity
is a function of x, we can solve the problem as before if we can express the

given function of # as a sum of terms of the form A sin m x, where m is a

whole number.

The problem of finding the value of the potential function at any point of

a long, thin, rectangular conducting sheet, of breadth TT, through which an

electric current is flowing, when the two long edges are kept at potential zero,

and one short edge at potential unity, is mathematically identical with the

problem we have just solved.

EXAMPLE.

Taking the temperature of the base of the plate described above as 100

centigrade, and that of the sides of the plate as 0, compute the temperatures
of the points

correct to the nearest degree. Ans. (a) 26; (b) 15; (c)
6.

8. As another illustration, we shall take the problem of the transverse

vibrations of a stretched string fastened at the ends, initially distorted into

some given curve and then allowed to swing.

Let the length of the string be I. Take the position of equilibrium of the

string as the axis of X, and one of the ends as the origin, and suppose the

string initially distorted into a curve whose equation y =f(x) is given.

We have then to find an expression for y which will be a solution of the

equation

D?y = a?D%y [vin] Art. 1,

while satisfying the conditions

y = when x = (1)

y== x = l (2)

y=f(x)
&quot; t = (3)

2&amp;gt;

t y = &quot; * = 0, (4)

the last condition meaning merely that the string starts from rest.
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As in the last problem let* y = eax+ ^ t and substitute in [vin]. Divide

by e
ax + ftt and we have /3

2= a2 a2 as the condition that our assumed value of

;/ shall satisfy the equation. _
6&amp;lt;ucaat

,~

is, then, a solution of (viu) whatever the value of a.

It is more convenient to have a trigonometric than an exponential form to

deal with, and we can readily obtain one by using an imaginary value for a in
(5).

Replace a by ai and (5) becomes y = e(* a0cu
,
a solution of [vin]. Replace

a by ai and (5) becomes ?/
= e~ (a:a )al

,
another solution of [vin]. Add

these values of y and divide by 2 and we have cos a(x at). Subtract the

second value of y from the first and divide by 2i and we have sin a(x at).

y cos a(x + at)

y = cos a(x at)

y =2 sin a(x +
?/ = sin a(x at)

are, then, solutions of [vin]. Writing y successively equal to half the sum

of the first pair of values, half their difference, half the sum of the last

pair of values, and half their difference, we get the very convenient particular

solutions of [vin].
y =. cos ax cos aat

y =. sin ax sin aat

y = sin ax cos aat

y = cos ax sin aat .

If we take the third form

y =. sin ax cos aat

it will satisfy conditions (1) and (4),
no matter what value may be given to

a, and it will satisfy (2) if a = where ra is an integer.

If then we take

. TTX irat . 2jrx 2irat STTX .

y= Al sin cos --h ^2 sin
j

cos ---
1- A3 sin j

cos ---h &quot; *

(6 )

L L i&amp;gt; & L L

where A15 A2 ,
A3 are undetermined constants, we shall have a solution of

[vin] which satisfies (1), (2), and (4).
When t = it reduces to

TTX . . 2irx . . . STTX .

y = A! sm + Az sm --h ^ sin
-y- + (7)

If now it is possible to develop f(x) into a series of the form
(7), we can

solve our problem completely. We have only to take the coefficients of this

series as values of Aj, A2 ,
A8 . . . in (6), and we shall have a solution of

FVIII] which satisfies all our given conditions.

* See note on page 5.
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In each of the preceding problems the normal function, in terms of which a

given function has to be expressed, is the sine of a simple multiple of the

variable. It would be easy to modify the problem so that the normal form
should be a cosine.

We shall now take a couple of problems which are much more complicated
and where the normal function is an unfamiliar one.

9. Let it be required to find the potential function due to a circular wire

ring of small cross section and of given radius c, supposing the matter of the

ring -to attract according to the law of nature.

We can readily find, by direct integration, the value of the potential function

at any point of the axis of the ring. We get for it

r-JU d)

where M is the mass of the ring, and x the distance of the point from the

centre of the ring.

Let us use spherical coordinates, taking the centre of the ring as origin and

the axis of the ring as the polar axis.

To obtain the value of the potential function at any point in space, we must

satisfy the equation

rD?(rV) + ApnUt?) -h i XVF= 0, [xm] Art. 1,

subject to the condition

7=
(C

2^i ^en = 0. (1)

From the symmetry of the ring, it is clear that the value of the potential

function must be independent of
&amp;lt;f&amp;gt;,

so that [xm] will redi^ee to

rZ&amp;gt;?(rV) + D. (sin Z&amp;gt;. F) = 0. (2)

We must now try to get particular solutions of (2),
and as the coefficients

are not constant, we are driven to a new device.

Let * F= r m P, where P is a function of 6 only, and m is a positive integer,

and substitute in (2), which becomes

m(m + l)r*P + 4^ D, (sin D, -P) =0.

* See note on page 5 .
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Divide by rm and use the notation of ordinary derivatives since P depends

upon only, and we have the equation

0, (3)

from which to obtain P.

Equation (3) can be simplified by changing the independent variable. Let

x = cos 6 and (3) becomes

Assume * now that P can be expressed as a sum or as a series of terms

involving whole powers of x multiplied by constant coefficients.

Let P= 2 an x
11 and substitute this value of P in

(4). We get

2 O (n I) anx~ 2 n (n + 1) an x&quot; + m
(HI + 1) an ]

=
, (5)

where the symbol 5 indicates that we are to form all the terms we can by

taking successive whole numbers for n.

As (5) must be true no matter what the value of x, the coefficient of any

given power of x, as for instance #*, must vanish. Hence

(k + 2)(k + lK +2
-

k(k + l)a,+ m(m +!)*= (6)

(m + 1)
a*+*= +2)

&quot; a*

If now any set of coefficients satisfying the relation (7) be taken, P= 2 a*x*

will be a solution of (4).

If k = m, ak+2 = Q, afc+4 = 0, &c.

Since it will answer our purpose if we pick out the simplest set of coefficients

that will obey the condition (7), we can take a set including am .

Let us rewrite (7) in the form

a* ~ ~
(m
-

k) (m + k + 1)
*+**

We get from (8), beginning with k = m 2,

m (m 1)
a

&quot;-2==
~

2. (2w
-

1)
a

&quot;

_ m(m l)(m 2)(m 3)
a

&quot;- 4
=

2A. (2m 1) (2m 3)
a&amp;gt;n

m(ml) (m 2)(m 3) (m 4) (m
~

5)
a - 6

~&quot;

2. 4. 6. (2m
-

1) (2w
-

3) (2m 5)

* See note on page 6.
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If m is even we see that the set will end with a
,
if m is odd, with % .

where am is entirely arbitrary, is, then, a solution of
(4). It is found con

venient to take am equal to

(2m 1) (2m 3) 1

ml

and it can be shown that with this value of am P= 1 when JB = 1.

P is a function of x and contains no higher powers of x than xm. It is

usual to write it as Pm (x).

We proceed to compute a few values of Pm (x) from the formula

(2^
-

1) (2m
-

3)
.^ 1 I&quot; m (m

-
1)

! L 2.2m-l x

2. 4. (2m 1) (2m 3)
We have:

-i

-(10)

PQ(x)
= 1 or P (cos 0)

= 1

P^x) = x &quot;

P!(COS 0)
= cos0

P2(x)
=

(3.x
2 -

1) P2(cos 0)
= i (3 cos2 -

1)

A() = i G^
3 -

3a;)
&quot; P3(cos tf)

= * (5 cos3 - 3 cos 0)

p^x) = $ (35*
4 - 30*2+ 3) or

P4(cos 0)
=

(35 cos4 30 cos2 + 3)
PB (x)

= i (63x
5 70x3 + lox) or

P5(cos 0)
=

^(63 cos 5 70 cos8 + 15 cos0) .

We have obtained P= Pm (x) as a particular solution of
(4) and

P= Pm (cos 0) as a particular solution of
(3). Pm (x) or Pm (cos 0) is a

new function, known as a Legendre s Coefficient, or as a Surface Zonal Har

monic, and occurs as a normal form in many important problems.
V= rwPm (cos 0) is a particular solution of (2) and rmPm (cos 0) is some

times called a Solid Zonal Harmonic.

We can now proceed to the solution of our original problem.

V=ArP (cos 0) +^4 1rP1 (cos 0)+ ^2 r
2P2 (cos 0) -M3 r

8P3 (cos 0) H
----

(11)

where AQ ,
Al ,

A2 , &c., are entirely arbitrary, is a solution of (2) (v. Art. 5).

When =
(11) reduces to

since, as we have said, Pm (x)
= 1 when x= 1, or Pm (cos 0)

= 1 when = 0.

By our condition (1)

when * = 0.

F=
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By the Binomial Theorem

M
_^&quot;r-, _ 1^,1^ r!__ i^ ^. ..&quot;i

(c* + r*)*

~ T L 2 c2
&quot;

1

&quot;

2.4 c* 2.4.6 c&quot;

&quot;*

&quot;J

provided r &amp;lt; c. Hence

is our required solution if r &amp;lt; c; for it is a solution of equation (2) and satis

fies condition (1).

EXAMPLE.

Taking the mass of the ring as one pound and the radius of the ring as one

foot, compute to two decimal places the value of the potential function due to

the ring at the points

(a) (r
= .2,0 = 0); (d) (r

= .6,0 = 0); (

= 2 = V ^ (a) .98; (ft) .99; (
C
) 1.01; (d) .86;

2;
(e)

&amp;gt;9Q

.

(/) 1&amp;lt;00
; (^) 1.10.

The unit used is the potential due to a pound of mass concentrated at a point

and attracting a second pound of mass concentrated at a point, the two points

being a foot apart.

10. A slightly different problem calling for development in terms of Zonal

Harmonics is the following:

Required the permanent temperatures within a solid sphere of radius 1,

one half of the surface being kept at the constant temperature zero, and the

other half at the constant temperature unity.

Let us take the diameter perpendicular to the plane separating the unecjually

heated surfaces as our axis and let us use spherical coordinates. As in the

last problem, we must solve the equation

rD*(ru) + A (sin D9 u) + D}u = [xm] Art. 1

which as before reduces to

(sin D9 u)
=

(1)

from the consideration that the temperatures must be independent of

Our equation of condition is

u = 1 from = to = and u = from =
^

to =
when r = 1.
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As we have seen u = rmPm (cos 6) is a particular solution of
(1),

m being

any positive whole number, and

u= A rPQ (cos 0) +A1rPl (cos 0) -fA2 r&amp;gt;Pz (cos 6) +AsrP3 (cos 0) -\
----

(3)

where AQ ,
Ai9 A*, As

- . are undetermined constants, is a solution of
(1).

When r = 1 (3) reduces to

w = AP (cos 0) + ^! P! (cos 0) -f ^2P2 (cos 0) + ^43P8 (cos 0) H---- (4)

If then we can develop our function of which enters into equation (2) in

a series of the form (4),
we have only to take the coefficients of that series

as the values of AQ,A^,AZ , &c., in (3) and we shall have our required solution.

11. As a last example we shall take the problem of the vibration of a stretched

circular membrane fastened at the circumference, that is, of an ordinary drum

head. We shall suppose the membrane initially distorted into any given form

which has circular symmetry
* about an axis through the centre perpendicular

to the plane of the boundary, and then allowed to vibrate.

Here we have to solve

D?z = c*
(D?z + ;Dr z + i

D{^ [xi] Art, 1

subject to the conditions

% =/(?) when t = (1)

D
(
s = &quot; =

(2)

z = r = a (3)

From the symmetry of the supposed initial distortion z must be independ

ent of
&amp;lt;#&amp;gt;,

therefore [xi] reduces to

(4)

and this is the equation for which we wish to find a particular solution.

We shall employ a device not unlike that used in Art. 9.

Assume t = R-T where R is a function of r alone and T is a function of

t alone. Substitute this value of in (4) and we get

01 dr

The second member of (5) does not involve t, therefore its equal the first

member must be independent of t. The first member of (5) does not involve

* A function of the coordinates of a point has circular symmetry about an axis when its

value is not affected by rotating the point through any angle about the axis. A surface ha*

circular symmetry about an axis when it is a surface of revolution about the axis.

t See note on page 5.
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r, and consequently since it contains neither t nor r, it must be constant. Let

it equal fJ&amp;gt;

z
,
where ft of course is an undetermined constant.

Then (5) breaks up into the two differential equations

O (6)

5== 0. (7)dr2 r dr ^

(6) can be solved by familiar methods, and we get T= cos pet and T= sin put

as simple particular solutions (v.
Int. Cal. p. 319, 21).

To solve (7) is not so easy. We shall first simplify it by a change of inde

pendent variable. Let r = -- (7) becomes

0. (8)x dx ^

Assume, as in Art. 9, that R can be expressed in terms of whole powers of

x. Let R = 2 anx
n and substitute in

(8).
We get

2 [n(n l)anx
n~ 2 + nan x

n~ 2 + nz] ,

an equation which must be true no matter what the value of x. The coeffi

cient of any given power of x, as xk~ 2
, must, then, vanish, and

k(k l)ak + kak + *_ 2
=

or k*ak + a k_, =
whence we obtain ak_ 2

= k*at (9)

as the only relation that need be satisfied by the coefficients in order that

R = 2akx
k shall be a solution of (8).

If k = 0, %._ 2
= 0, t_ 4 =0, &c.

We can then begin with k as our lowest subscript.

ak 2

From (9)
ak = --^~

a
Then a2

=
2

2 2 42

* 2 &amp;gt;2

.4
2
.6

2

r ^
_i

^ ^6

&quot;IHence -K = 1
2*

&quot;&quot; ^MT
~

22
.4

2
.6

2

where a may be taken at pleasure, is a solution of
(8), provided the series is

convergent.
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Take a =$1, and then R = JQ (x) where

- - _L
X* X*

JQ (x) 1
2 2 2 2 42 2 2 42 62 22 42 62 82

* *

(^)

is a solution of (8).

JQ (x) is easily shown to be convergent for all values real or imaginary of x,

since the series made up of the moduli of the terms of JQ (x) (v.
Int. Cal.

Art. 30)

where r is the modulus of x, is convergent for all values of r. For the ratio
&amp;gt;

of the rc + 1 st term of this series to the n th term is _ and approaches
4ft

zero as its limit as n is indefinitely increased, no matter what the value of r.

Therefore JQ(X) is absolutely convergent.

JQ (x) is a new and important form. It is called a Bessel s Function of the

zero th order, or a Cylindrical Harmonic.

Equation (8) was obtained from (7) by the substitution of x = ftr, therefore

,

r 22 222
&quot;22

r
22,42 22.4

2
.6

2

is a solution of (7), no matter what the value of ft, and z = J (pr) cos pet

or * = Jo (fir)
sin ftc is a solution of (4).

z = JQ (fir)
cos ftc satisfies condition (2) whatever the value of ft. In

order that it should also satisfy condition (3) ft must be so taken that

Jo(fta)=0; (11)

that is, ft must be a root of (11) regarded as an equation in ft.

It can be shown that J (x) =0 has an infinite number of real positive

roots, any one of which can be obtained to any required degree of approxima

tion without serious difficulty. Let x
1}
z2 , ,

be these roots. Then if

. (12)

where ^, A2 ,
As , &c., are any constants, is a solution of (4) which satisfies

conditions (2) and
(3).

When t = (12) reduces to

= A,JQ far) + A2J far) -f A% JQ far) + . (13)

If then /(r) can be expressed as a series of the form just given, the solution

of our problem can be obtained by substituting the coefficients of that series

tor A l9 AI, A9 , &Q., in (12).



CHAP. L] DISCUSSION OF METHODS. 15

EXAMPLE.

The temperature of a long cylinder is at first unity throughout. The convex

surface is then kept at the constant temperature zero. Show that the tem

perature of any point in the cylinder at the expiration of the time t is

+ Aie

where /ii; /42 , &c., are the roots of J (^c)
=

0, and where

1 =A1J (pl r) + A2J (p2 r) + AsJ (f^s r) -\
----

,

c being the radius of the cylinder.

12. Each of the five problems which we have taken up forces npon us the

consideration of the development of a given function in terms of some normal

form, and in two of them the normal form suggested is an unfamiliar function.

It is clear, then, that a complete treatment of our subject will require the inves

tigation of the properties and relations of certain new and important functions,

as well as the consideration of methods of developing in terms of them.

13. In each of the problems just taken up we have to deal with a homo

geneous linear partial differential equation involving two independent vari

ables, and we are content if we can obtain particular solutions. In each case

the assumption made in the last problem, that there exists a solution of the

equation in which the dependent variable is the product of two factors each of

which involves but one of the independent variables, will reduce the question

to solving two ordinary differential equations which can be treated separately.

If these equations are familiar ones their solutions can be written down at

once; if unfamiliar, the device used in problems 3 and 5 is often serviceable,

namely, that of assuming that the dependent variable can be expressed as a

sum or series of terms involving whole powers of the independent variable,

and then determining the coefficients.

Let us consider again the equations used in the first, second and third

problems.

(a) D?u + D&amp;gt;
=

(1)

Assume u = X. Y where X involves x but not y, and Y involves y but not x.

Substitute in
(1),

YD*X+XDJY=0,
or, since we are now dealing with functions of a single variable,

1 d*Y 1 d*X
or ~*=~*
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Since the first member of (2) does not contain x, and the second member

does not contain y, and the two members must be identically equal, neither of

them can contain either x or y, and each must be equal to a constant, say a2
.

Then _ a2r== (3)

d*X
and -^r + a2X=0; (4)

and if (3) and (4) can be solved, we can solve (1). They have for their com

plete solutions Y_ A&ay + Be-*y

and X C sin ax -f D cos ax .
(v.

Int. Cal. p. 319, 21.)

Hence Y=eay and Y=e~ ay are particular solutions of
(3), X=8inax

and X= cos ax are particular solutions of
(1),

and consequently

u = eay sin ax
,

u = e&v cos ax
,

u = e~ ay sin ax
,
and u = e~ ay cos ax

are particular solutions of
(1).

These agree with the results of Art. 7.

(ft) Dfy = a*D*y (1)

Assume y = T.X where T is a function of t only and -2&quot; a function of x

only; substitute in (1) and divide by a*TX. We get

hence as in the last case --r is a constant; call it a2
,
and (2) breaks

(3)

(4)

The complete solutions of (3) and (4) are

X= A sin ax + B cos ax

and T= C sin aa* + D cos aat, (v.
Int. Cal. p. 319, 21).

y= sin ax cos aatf, y= sin ase sin aat, y= cos ax cos aat, y= cos ax sin aa

are particular solutions of (1),
and agree with the results of Art. 8.

(c)
rDr\r F) + -^ D9 (sinOD V)=Q- (1)

Assume F= -R. where ^ involves r alone, and involves B alone; sub

stitute in (1),
divide by .R., and transpose; we get

R
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Since by the reasoning used in (a) and () each member of (2) must be a con

stant, say a2
,
we have

a*R
(3)

and

(3) can be expanded into

(5) can be solved
(v.

Int. Cal. p. 321, 23), and has for its complete solution

R = Arm -f Brn
,

where m = \ + Va2
-f i and n = $ Va2+ i

Hence ?i = m 1, and a2
may be written m(m -f- 1), m being wholly

arbitrary; and
R = Arm + J?/--- 1

.

1
R = rm

,
and ^=^TT

are, then, particular solutions of

With the new value of a2

(4) becomes

&amp;lt;

+ l)-0. (7)

which has been treated in Art. 9 for the case where m is a positive integer,

and the particular solution = Pm (cos ^) has been obtained.

Hence V= rmPm (cosO)

and F=^T Pwl (cos0),

m being a positive integer, are particular solutions of
(1). The first of these

was obtained in Art. 9, but the second is new and exceedingly important.

14. The method of obtaining a particular solution of an ordinary linear

differential equation, which we have used in Articles 9 and 11, is of very

extensive application, and often leads to the general solution of the equation

in question.
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As a very simple example, let us take the equation Art. 13 (a) (4), which
we shall write

dx* + a*z = .

(1)

Assume that there is a solution which can be expressed in terms of powers
of x-j that is, let z = 2t an x

n
,
where the coefficients are to be determined

Substitute this value for z in (1) and ive get

2 \n(n l)an x
n - 2 + a?anx

n
~\

=
.

Since this equation must be true from its form, without reference to the value

of x, that is, since it must be an identical equation, the coefficient of each

power of x must equal zero, and we have

(n + 1)(K + 2)
whence an = ~tf~

~ a + 2

is the only relation that need hold between the coefficients in order that

z = 2 an x
n should be a solution of

(1).

If n -\- 2 = or n -f- 1 =
,
an will be zero and an_ 2 ,

a
re _ 4 , &c., will be

zero. In the first case the series will begin with a r in the second with a^ .

(n + l)(n + 2)

If we begin with a we have

..

a a* a&quot;

a2
= K-. a

,
a4
=

j-.
a

&amp;gt;

6
= ,-. a

, &c., . . .

azx* a*x4 ax6 m
and z = aQ l---- + --- -r H---- (2)

or z = a cos ao; (3)

is a particular solution of (1).

If we begin with a^ we have

a&quot; _ a*

3]%, &amp;lt;*5
=

5!

and = aj -
~ &quot;

~
&quot;*&quot;

&quot;
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is a solution of (1) ;
a l can be taken at pleasure. Let a = a

, (4) becomes

a3*8

* = ax &quot;

^T ^T
~

7T

or z = sin a#

which, then, is a particular solution of
(1).

z = A sin ax -\- B cos ax
(5)

is, then, a solution of (1), and since it contains two arbitrary constants it is

the general solution.

15. As another example we will take the equation

d*z dz
x*d^ + 2x

tic~
m

(
m + 1&amp;gt;

= 0, (1)

which is in effect equation (6),
Art. 13

(c),
and let m be a positive integer.

Assume z = ^an x
n and substitute in

(1). We get

2
|&amp;gt;&amp;lt;&amp;gt; -hi) m(m + 1)] an a? = .

This is an identical equation, therefore

\n(n + 1) m(m + l)]an = .

Hence an = for all values of n except those which make

n(n + 1) m(m -f 1)
=

,

that is, for all values of n except n = m and n = m 1 . Then

z = Axm + Bx~m~ l

(2)

is the general solution of (1) and

z = xm and * = 5Hn

are particular solutions. If m is not a positive integer this method will not

lead to a result, and we are driven back to that employed in Art. 13 (c).

16. Let us now take the equation

d

which is in effect equation (4), Art. 9, and is known as Legendre s Equation.

(1) may be written

\ /7i2 /7i \ / \ /
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Assume z = S, anx
n and substitute in

(2). We get

^ {n(n !) xn~* + [m(m + 1) n(n -f 1)]V} =
,

Hence (n + !)( + 2)aw + 2 + [m(m + 1) n(n + 1)] an= ,

or = m /?rc-i- 1) M /
7^J_ i)

an + s- (3)

If an= 0, then aw _ 2
=

0, M _ 4
=

0, &c.; but an = Q if = 2 or = 1.

For the first case we have the sequence of coefficients

^- m(in

m(m 2) (m + 1) (m + 3)

4J
~&quot;

^0

m(m 2) (m 4) (m + 1) (m -f 3) (m -f 5)

Let us take a
,
which is arbitrary, as 1. Then z = pm (x) where

/* //wi _L 1 \ j /MI 9^ / -I- 1 &quot;N f

is a solution of Legendre s Equation if pm (x) is a finite sum or a convergent

series.

For the second case we have the sequence of coefficients

(m
-

1) (m + 2)
3
=--

3f-
- ai

i

(m l)(m 3)(m + 2)(m -f 4)
5
= -

-5]-
-

!

(m
-

1) (m
-

.3) (m
-

5) (m + 2) (m + 4) (m + 6)
#7 =-- j-j

Let us take ! ,
which is arbitrary, as 1. Then z = qm(x) where

-l)(m-3) (m+ 2) (m-f 4)~~
3

is a solution of Legendre s Equation if qm (x) is a finite sum or a convergent

series.
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If m is a positive even whole number, pm (x) will terminate with the term

containing x&quot;

1

,
and is easily seen to be identical with

, . ^
-* Pm (x). [v. Art. 9 (9)]r (m -\- 1)

m v / L v /j

For all other values of m, pm (x) is a series.

The ratio of the (n + l)st term of pm (x) to the rath, when m is not a posi

tive even integer, is

(2n 2 m) (2rc
1 + m)

Its limiting value, as w is increased, is cc
2
,
and the series is therefore con

vergent if 1 &amp;lt; x &amp;lt; 1. It is divergent for all other values of x.

If 7H. is a positive odd whole number qm (x) will terminate with the term

containing x, and is easily seen to be identical with

For all other values of m, g
fm (ic)

is a series, and can be shown to be con

vergent if 1 &amp;lt; x &amp;lt; 1, and divergent for all other values of x.

z = APm (x) + Bqm (x) (6)

is the general solution of Legendre s Equation if 1 &amp;lt; a &amp;lt; 1, no matter

what the value of w. From Art. 13 (c)
it follows that

are particular solutions of

no matter what the value of m, provided cos is neither one nor minus one.

In the work we shall have to do with Laplace s and Legendre s Equations,

it is generally possible to restrict m to being a positive integer, and hereafter

we shall usually confine our attention to that case.
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With this understanding let us return to (3), which may be rewritten

(m n) (m -\- n+ 1)

If an + 2
= Q, then M + 4

= 0, an + 6
= 0, &c.;

but # + 2
= if 7i = m, or n = m 1.

If in (3) we begin with n = m 2, we get the sequence of coefficients already

obtained in Art. 9, and we have * = Pm (x),
where

(2m-l)(2m-3) 1 f_ m(m-l)~ &quot;

m(m 1) (m 2) (m 3) _ 4
&quot;1 2.4. (2m 1) (2m 3)

^

m(m 1) (m 2) (m 3) (m 4) (m 5)

2.4.6. (2 m 1) (2 m 3) (2 m 5)

as a particular solution of Legendre s Equation.

If, however, we begin with n = m 3, we have

3

2(2 m + 3)

2.4. (2m + 3) (2m + 5)

(m -f 1) (m + 2) (m -f 3) (m -f- 4) (m -f 5) (m -f- 6)

2.4.6. (2m -f 3) (2m + 5) (2m -f 7)
a-m-i

m!

a_m_ l may be taken at pleasure, and is usually taken as
^ ^ ^

,2m -j. l)

and z = Qm(x)
where

m!

2.4.(2m + 3) (2m + 5)

H
2.(2m + 3) * +

H

J

is a second particular solution of Legendre s Equation, provided the series is

convergent. Qm (x) is called a Surface Zonal Harmonic of the second kind.
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It is easily seen to be convergent if x &amp;lt; 1 or x &amp;gt; 1, and divergent if

-!&amp;lt;*&amp;lt;!.

Hence if m is a positive integer,

x) (10)

is the general solution of Legendre s Equation if x &amp;lt; 1 or x &amp;gt; 1.

We have seen that for 1
&amp;lt; x &amp;lt; 1

*-() (-if
r
r(&quot; +1

\T *.( )

2-[r(f+i)]
if m is an even integer, and

if m is an odd integer.

If now we define Qm (x) as follows when 1 &amp;lt; x &amp;lt; 1

T(m-hl)

if m is an odd integer, and

if w is an even integer, then (10) will be the general solution of Legendre s

Equation if m is a positive integer when 1 &amp;lt; x &amp;lt; 1, as well as when x
&amp;lt; 1

or x &amp;gt; 1.

17. Let us last consider the equation

d?z 1 dz

which is known as Bessel s Equation, and which reduces to (8) Art. 11,

that is, to

d*z 1 dz

when w = 0;* (1) can be simplified by a change of the dependent variable.

* This equation was first studied by Fourier in considering the cooling of a cylinder. We
shall designate it as &quot; Fourier s Equation.&quot;
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Let 2 = xv and we get

d*v 2ra + l dv

^2 + ^-^ + v==0 &
to determine v.

Assume v = S
&amp;lt;*#&quot;,

and substitute in (2). We get

2
[&amp;gt;(2

m -f ri)anx
n- 2 +

&quot;]

= 0;

whence an_ 2
=

n(2 m + ra)an .

If we begin with n = 0, then a
fl_ 2

= 0, an_ 4
= 0, &c., and we have the

set of values

22

(ra__
*
=

2. 4(2m + 2)(2m + 4)

~~
24

. 2 !(w + l)(m + 2)_OP_ ___ p___ .

a = &quot;&quot;

2.4.6(2m + 2)(2m -f 4)(2m + 6)

~
26

.3 !(m + l)(m+ 2)(m+ 3)

r cc
2 __^_

whence * = a m
|^1

-
2 (m + 1}

+
2*.2!(m + l)(m + 2)

-i

J

is a solution of BessePs Equation. a is usually taken as
^^&quot;j

if m is a P08

itive integer, or as
2OT r /m + ^

if m is unrestricted in value, and the second

member of (3)
is represented by Jm (x) and is called a QesseVs Function of the

wth order, or a Cylindrical Harmonic of the rath order.

If m = ,
Jm (x) becomes 7 (x)

and is the value of * obtained in Art. 11

as the solution of equation (8) of -that article.

If in equation (1) we substitute x~mv.m place of xmv for z, we get in place

of (2) the equation
d*v l Zmdv,
dx*
+ F-^ + &quot;

=

and in place of (3)

-
22

(1 m) 24
.2!(1 m)(2

- w

&quot;&quot;

26
.3!(1

-
m)(2 -m)(3 m)

&quot;^

J
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If is taken equal to --- the second member of (4) is the same
2i 1 (1

~
wi)

function of m and x that Jm (x) is of + m an(i x an(i may ^e written

*.,()
Therefore z = AJm (x) + BJ_m (x) (5)

is the general solution of (1) unless Jm (x) and J_m (x) should prove not to be

independent.

It is easily seen that when m = 0, J_m (x) and Jm (x) become identical

and (5) reduces to

and contains but a single arbitrary constant and is not the general solution of

Fourier s Equation (8) Art. (11).

It can be shown that J-m (x)
=

( V)
mJm (x) whenever m is an integer,

and consequently that the solution (5) is general only when m if real is frac

tional or incommensurable.

The general solution for the important case where m = is, however, easily

obtained. Let F(m, x) be the value which the second member of (3) assumes

when a = 1
;
then the value which the second member of (4) assumes

when a = 1 will b -^( w,aj), and it has been shown that z = F(m,x) and

z = F( m,x) are solutions of Bessel s Equation; z = F(m,x) F( m,x)

is, then, a solution, as is also

F(m,x) F(m,x) .

2m ^ }

F(m.x) F( m.x)
but the limiting value which -- approaches as m approaches

&amp;gt;TH

zero is [DmF (w,^)]^,) and consequently

Q (7)

is a solution of the equation

d?z I dz

a* + x;fe + = W
and the general solution of (8) is

z = AJ (x) +B[DmF (m, z)]^ .

r a;
2

F (m, x)
=

26

.3!(w + l)(m + 2)(m + 3)
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i

*

mF(m, x)
= xm log x

t,-|.2
,j.4

_.

1 ~
2\m + 1)

+ 24

.2!(m + l)(m + 2)
+ *

J
The general term of the last parenthesis can be written

2&quot;. k\(m + l)(w -f 2) (m + k)

and its partial derivative with respect to m is

^ ^
2**7T!^ (m + l)(m -f 2) (m -f k)

Take the Z&amp;gt;m of both members and we have

Dm
(m -j- 1) (m + 2) (m + As)

+2) (m

a;
2 *

_ i i
&quot;1

-f&quot;
1

&quot;

t
&quot;^+ 2&quot;

t w+ A;J

22

(m H- 1) 24
.2!(m + l)(m + 2) 26

.3!(m + l)(w + 2)(m -f 3)

_^_^_
~&quot;2

2

(m + l)
2

&quot;~2
4
.2! (m + l)(m + 2)

_ __r 26
.3! (m+l)(m + 2

and we have

i r J i

)(m + 2) Lm-f 1
~r m+

L + 1 _J_n 4+ l m+Z^m+ Sj
^

1 6 I 1 1

--
2 8

(4!)

and z=AJ (x) + BK (x), (9)

2
a;
4 /I 1\ /I 1 1\= 7

(a5) log 2 + ^
-
^ VI + 2/ + 23 2 U + 2 + 3/where

is the general solution of Fourier s Equation (8).

XQ(X) is known as a BesseVs Function of the Second Kind.
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18. It is worth while to confirm the results of the last few articles by

getting the general solutions of the equations in question by a different and

familiar method.

The general solution of any ordinary linear differential equation of the

second order can be obtained when a particular solution of the equation has

been found [v. Int. Cal. p. 321, 24 (a)].

The most general form of a homogeneous ordinary linear differential equa
tion of the second order is

o (i)

where P and Q are functions of x. Suppose that

y = v (2)

is a particular solution of (1). Substitute y = vz in (1) and we get

-O. (3)

Call - = . Then (3) becomes

a differential equation of the first order in which the variables can be sepa

rated. Multiply by dx and divide by vz 1 and (4) reduces to

Integrate and we have

log * + log v* + Cpdx = C

or z v* = ec fpd* = Be-fpd*
,

rf* e~fpdx

dx;

(/V
fPdx \

A + ^J!^- dx) (5)

is the general solution of (1),
the only arbitrary constants in the second mem

ber of (5) being those explicitly written, namely, A and B.

(a) Apply this formula to (1) Art. 14,

~ + a2* =
; (1)
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given: = cosoa;, as a particular solution. Substituting in (5) we have

since P =
z = cos ax IA + B

J ^ j

/ ,

B \= cos ax (A + tan ax
j

= A cos ax + Bl sin ax , (2)

as the general solution of
(1),

and this agrees perfectly with (5) Art. 14.

(b)
Take equation (1) Art. 15.

a
d*z dz

dx2 dx \ / &amp;gt; \ /

given: z = cm
,

as a particular solution.

2 / fPdx 1
Here P = ~, I P&amp;lt;&

= 2 log a= log x
2

,
and e =-

2 . Henceby(5)

T&amp;gt;

that is

is the general solution of
(1),

and agrees with (2) Art. 15.

(c)
Take Legendre s Equation, (2) Art. 16.

(1
-

x*) ^-2x^ + m(m + l)z = ; (1)

given: s = Pm (x) ,
as a particular solution.

Here P =
^~__^a ,

C Pdx = log (1
-

x*) ,
and e-/p&amp;lt;te=

1 _^
Hence by (5)

* = Pm (x) (A + 3J(1
_^p^j) (2)

is the general solution of (1) and must agree with (10) Art. 16, if m is an

integer, and therefore

where (7 is as yet undetermined, and no constant term is to be understood with

the integral in the second member.

(d) Take BesseFs Equation, (1) Art. 17.

d*z 1 dz

given: z = Jm (x) ,
as a particular solution.
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Here P = -
,

f Pdx = log x
,

and e~fpdx = -
. Hence by (5)

(2)

is the general solution of Bessel s Equation.

If m = (2) becomes

and must agree with (9) Art. 17. Therefore

, (4)

where C is at present undetermined, and no constant term is to be taken

with the integral.

The first considerable subject suggested by the problems which we have

taken up in this introductory chapter is that of development in Trigonometric

Series
(v.

Arts. 7 and 8).



CHAPTER II.

DEVELOPMENT IN TRIGONOMETRIC SERIES.

19. We have seen in Chapter I. that it is sometimes important to be able

to express a given function of a variable x, in terms of the sines or of the

cosines of multiples of x. The problem in its general form was first solved

by Fourier in his &quot;Analytic Theory of Heat&quot; (1822), and its. solution plays a

very important part in most branches of modern Physics. Series involving

only sines and cosines of whole multiples of x, that is series of the form

&o H~ #1 cos x + &z cos 2x + + i sin x -{- aa sin 2x -f-

are generally known as Fourier s series.

Let us endeavor to develop a given function of x in terms of sin x, sin 2,
sin 3x, &c., in such a way that the function and the series shall be equal for

all values of x between x = and x = TT.

To fix our ideas let us suppose that we have a curve,

?=/(*),

given, and that we wish to form the equation,

y = _! sin x + #2 sin 2x + 3 sin 3x -J- ,

of a curve which shall coincide with so much of the given curve as lies between

the points corresponding to x = and x = TT.

It is clear that in the equation

y = #! sin x
(1)

! may be determined so that the curve represented shall pass through any

given point. For if we substitute in (1) the coordinates of the point in ques

tion we shall have an equation of the first degree in which ax is the only

unknown quantity and which will therefore give us one and only one value

for Oj .

In like manner the curve
yt

y = ax sin x -} az sin 2x

may be made to pass through any two arbitrarily chosen points whose abscissas

lie between and TT provided that the abscissas are not equal; and

y = a-L sin x + 2 sin 2x -f 3 sin 3x + - + an sin nx

may be made to pass through any n arbitrarily chosen points whose abscissas

lie between and TT provided as before that their abscissas are all different.

If, then, the given function f(x) is of such a character that for each value of x

between x = and x = TT it has one and only one value, and if between

x = and x = TT it is finite and continuous, or if discontinuous has only

finite discontinuities (v.
Int. Gal. Art. 83, p. 78), the coefficients in

y= j sin x -f- a z sin 2x -\- a s sin 3x { + a,H sin nx (2)
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son be determined so that the curve represented by (2) will pass through any

n arbitrarily chosen points of the curve

y=f(x)
_

(3)

whose abscissas lie between and TT and are all different, and these coefficients

will have but one set of values.

For the sake of simplicity suppose that the n points are so chosen that their

projections on the axis of JTare equidistant.

Q&\1 -
T--J
= Ax

;
then the coordinates of the n points will be [Ax, /(Ax)],

[2Ax,/(2Ax)J, [3Ax,/(3Ax)], |&amp;gt;Ax,/(raAx)].
Substitute them in (2) and

we have

=
0,1 sin Ax -f- a2 sin 2Ax -f as sin 3Ax -\ f- an sin

=
0,1 sin 2Ax -f- a2 sin 4Ax -f- as sin 6Ax + + sin 2

r (^)

/(3Ax)
=

i sin 3Ax + az sin 6Ax -f- s sin 9Ax -j f- an sin

/(nAx)
= ax sin ?iAx + az sin 2wAx + as s^11 3?iAx -{- + &amp;lt;

co equations of the first degree to determine the n coefficients i ,
az , 3 ,

an .

Not only can equations (4)
be solved in theory, but they can be actually

solved in any given case by a very simple and ingenious method due to

Lagrange.
Let us take as an example the simple problem to determine the coefficients

alt a2 ,
a3 , a*, and 5 ,

so that

y= a t sin x -\- 2 sin 2x -f- a3 sin 3x + a4 sin 4x -|- a6 sin 5x (5)

shall pass through the five points of the line

tiich
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7T 2-7T

Multiply the first equation by 2 sin
g ,

the second by 2 sin
-g-

,
the third

O__ A rrr O7T

by 2 sin
-g- ,

the fourth by 2 sin
-g-,

the fifth by 2 sin
-g-

and add the

equations.

The coefficient of 2 is

7T 27T 2-7T 4?T
,

SlT
,

6?T , 9 . 4?T
,

87T

2 sin
-g
sm

-g-
+ 2 sin

~6~
sin

&quot;6&quot;

&quot;*&quot;

Sm
IT

Sm
&quot;6&quot; ~6~

sm T
STT .

107T

-f- 2 sin
-g-

sin
g- ;

TT 2?r TT STT

but 2 sin
g

sin
-g-
= cos

g
cos

-g- ,
&c.

Hence the coefficient of az becomes

TT 2-7T
,

3-7T 4?r 5?r

cos 5- + cos -~- + cos -^- + cos -- + cos -x-
D D D D v

3?r 6?r OTT 12?r 15?r
cos -7, cos -p,

- cos -7. cos -7; cos j-
6 D D D O

and this may be reduced by the aid of an important Trigonometric formula

which we proceed to establish.

20. LEMMA.

I l sin(2n+l)2
cos + cos 20 -f cos 30 -i h cos nO = + o z C

1)

sin-

For let A^= cos + cos 20 + cos 30 H h cos nO and multiply by 2 cos 0.

2/Scos = 2 cos 2 + 2 cos cos 20 + 2 cos cos 30 H h 2 cos cos rc0

= 1 -f cos + cos 20 + + cos (n 1)

+ cos 20 + cos 30 + cos 40 H h cos (n + 1)0

-_ 2S + 1 + cos (n + 1) cos cos nO . Hence

1 cos n cos (n + 1)
&quot;
==

~~2~ 2(1 cos 0)

^
.. sin (2n + !)K

sin 77



CHAP. II.] NUMERICAL EXAMPLE. 33

21. Applying (1) Art. 20 to (7) Art. 19 the coefficient of aa reduces to

UTT .
337T

ll7T_ 7T 337T_ 37T
but

-jo
^

T2
a

~12~ T2

therefore

2 sm
12

2 sm
12

and 2 vanishes.

In like manner it may be shown that the coefficients of a8) a4 ,
and

vanish.

The coefficient of % is

2 sin J + 2 sin^J + 2 gin ^ + 2 sin^ + 2 sin^O O D O v

2?r 4?r GTT STT 10-7T

cos --- cos -- cos -- cos -- cos -r-
6 D O O O

2 sin ^ 2 sin F6 D

The first member of the final equation is

2-7T TT 2?r 2?r , ^ 3?r . 3?r , rt 4?r . 4?r . _ STT . 5?r TT
iix 2-8in28in 28in, Hence

&quot;i

=
1 XT siuT =

I&quot;

(2 +^ = 2 approximately-
t=i

If we multiply the first equation of (6)
Art. 19 by 2 sin

,
the second by

A d ft

2 sin ~
,

the third by 2 sin ~
,

the fourth by 2 sin , the fifth

1 OTT

by 2 sin ,
add and reduce as before we shall find

2 &amp;lt;r+ JCTT . 2&7T 7T
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and in like manner we get

2 ^-s ktr . Skir TT

_ 2
&amp;lt;^

kir . 4&7T _ _ 7ry/3 _a*
-

6 2, If
Sm

~6~
- &quot;

18
- &quot;

2

Therefore

y = 2 sin x 0.9 sin 2x -f 0.5 sin 3cc 0.3 sin 4a + 0.1 sin 5x (1)

7T 2-7T 37T
cuts the curve y=x at the five points whose abscissas are /r

&amp;gt;

~~
; -rr

&amp;gt;

5?r

22. The equations (4) Art. 19 can be solved by exactly the same device.

To find any coefficient am multiply the first equation by 2 sin m&x
,

the

secqnd by 2 sin 2m&amp;lt;\x, the third by 2 sin 3m&x, &c. and add.

The coefficient of any other a as ak in the resulting equation will be

2 sin k&x sin m&x + 2 sin 2k&x sin 2mAa? + 2 sin 3&A# sin 3mAa; -}-

-f- 2 sin TI^AX sin nm&x

=
cos(?/i A;)Aaj+cos2(i &)Aa;+cos3(w ^)AxH-----hcosw(m A;)Ao;

cos(/H-A;)Aaj cos2(??t+ ^)^ic cos3(m.-|-A;)AiP
-----

cosn(m-}-k) AOJ

-sn ~-
(m A;)

Ace sin -
(m +

&quot;

,.
2 sin i-r-^ 2 sin

1 j / i &amp;lt;\A- and (n + 1)As = TT .

Hence the coefficient of ak may be written

tfm k)&x~l r. . , N (w-hA;)Aa:n
(m
-

QTT
- ^-2~ \

Bm
I

^ ^ &quot;~

2 J
(m A;)Ax . (m

2 sin *- - 2 sin *

but this is equal to - - or -
-|- ^ according as m k is odd or even

a a

and so is zero in either case.
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The coefficient of am will be

2 sin2raAx -(- 2 sin2 2raAx + 2 sin2 3wAx -| -j- 2 sin2 rcraAx

1 -f 1 + 1 + + 1

cos 2wAx cos 4wAx cos 6?w.Ax cos 2nm&x

_ _
2 2 sm raAx J v

But (2n -}- l)wAx= 2m(n+ l)Ax raAx= 2m7r raAx,

therefore
sin (2n + l)mAx = sin (2ra?r

-
raAx) _ _ 1

2 sin wAce 2 sin mAx 2

and the coefficient of am is ?i -f- 1 .

The first member of our final equation will be

t=n

2 kkx sin

Hence
t=n

m = ^q-

and the curve

y= ! sin x -}- az sin 2a; -|- -f- an sin ?ia;
, (2)

where the coefficients are given by (1)
will pass through the n points of the

curve y =f(x) whose abscissas are Ax, 2Ax, 3Ax, rcAx. Ax being ^jr-

It should be noted that since the n equations (4) Art. 19 are all of the first

degree there will exist only one set of values for the n quantities al ,
az ,

a9 ,

an that can satisfy these equations. Consequently the solution which we
have obtained is the only solution possible.

23. The result just obtained obviously holds good no matter how great a

value of n may be taken.

If now we suppose n indefinitely increased the two curves (2) Art. 22 and

y =/(x) will come nearer and nearer to coinciding throughout the whole of

their portions between x = and x = TT
,

and consequently the limiting

form that equation (2) Art. 22 approaches as n is indefinitely increased will

represent a curve absolutely coinciding between the values of x in question
with y =/(x).
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Let us see what limiting value am approaches as n is indefinitely increased.

2
* = &quot;

am =
^-j j- ^ /(&Ax) sin km&x

(1) Art. 22.

i = i

k=n
2AT

^/(&Ax)sin;bmAx

2 r- -i=
/(Ax) sinmAx. Ace+/(2Ax) sin 2mAx.AxH-----f-/(rcAx) sin raraAx.Ax

_ 2
|~/{Ax)

sin?raAx.Ax+/(2Ax) sin2mAx.Ax+ -i

TTL +/(TT Ax)sinm(7T Ax).AxJ
TT

since Ax = r

As 7i is increased indefinitely Ax approaches zero as a limit. Hence the

limiting value of am as n increases indefinitely is

&quot;I

TT Ax= (&amp;gt;

&quot;f/C
71

&quot; ~~
Ax) sin m(ir Ax).AxJ

2 limit l~/(Ax) sinmAx.Ax -f/(2Ax) sin2mAx.Ax H

2= -
I /(x) sin mx.dx. [v. Int. CaL Arts. 80, 81.]

&quot; J

Hence /(x)
= ax sin x + a2 sin 2x + s sin 3x + , (2)

where any coefficient am is given by the formula

2 /
am = I /(x) sin mx.dx

, (3)

^r
is a true development of /(x) for all values of x between x = and x = TT

provided that the series (2) is convergent, for it is in that case only that we can

assume that the limiting value of the second member ctf (2) Art. 22 can be ob

tained by adding the limiting values of the several terms.

When x = and when x = TT every term in the second member of (2)

is zero, and the second member is zero and will not be equal to /(x) unless /(x)

is itself zero when x = and x = TT
;

but even when /(x) is not zero for

x = and x = TT the development given above holds good for any value

of x between zero and TT no matter how near it may be taken to either of these

values.

24. Instead of actually performing the elimination in equations (4) Art.

19 and getting a formula for am in terms of n, and then letting n increase

indefinitely, we might have saved labor by the following method.

* We shall use the sign = for approaches. Ax = is read Ax approaches zero.



CHAP. II. J ABRIDGED METHOD. 37

Return to equations (4) Art. 19 and multiply the first by Aa; sin m&x,
the second by Aa; sin 2mkx, and so on, that is multiply each equation by Aa;

times the coefficient of am in that equation, and then add the equations.

We get as the coefficient of ak

sin kAx sin m&x. Ao; + sin 2/vAa; sin 2m&x. Aa; -| (- sin nk&x sin nm&x. Aa;.

Let us find its limiting value as n is indefinitely increased. It may be

written, since (n -\- 1) Ax= TT
,

limit rsin&AxsinraAa;. Aa;-|-sin2&Aa;sm2w&Aa;. AaH
Aa; == L 4~ sin &(TT Aa;) sinm (TT Aa;).Aa;J

jr

=
J

sin kx sin mx. dx
;

o

IT JT

but
I

sin kx sin mx.dx = i I [cos (in k}x cos (in + k)x]dxJ J
= if m and k are not equal.

The coefficient of am is

Ax(sin
2 raAa; -{- sin2 2mbx + sin2 3mAa; -f + sin2

nm&x) .

Its limiting value

im
.

1

Q
sin2 mAa;.Aa; + sin2 2mAa;.Aa; -{- + sin2

m(7T Ax)Aa;

/7Tsin2 mx.dx =
4

The first member is

/(Ax) sin wAa;.Aa; +/(2Ax) sin 2mAx.Ax + +/(nAx) sin mwAx.Aa;

and its limiting value is

J /(a;)
sin mx.dx .

o

Hence the limiting form approached by the final equation as n is increased is

IT

C sn

am = -
T/(^) siWhence a = - /^ sin mx.cte as before.

This method is practically the same as multiplying the equation

f(x)
=

! sin x + a sin 2a; -f s sin 3a; -f- (1)

by sin mx. dx and integrating both membersfrom zero to TT .
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It is exceedingly important to realize that the short method of determining

any coefficient am of the series (1) which has just been described in the itali

cized paragraph, is essentially the same as that of obtaining am by actual

elimination from the equations (4) Art. 19, and then supposing n to increase

indefinitely, thus making the curves (3) Art. 19 and (2) Art. 19 absolutely
coincide between the values of x which are taken as the limits of the

definite integration.

25. We see, then, that any function of x which is single-valued, finite, and
continuous between x = and x = TT, or if discontinuous has only finite

discontinuities each of which is preceded and succeeded by continuous por

tions, can probably be developed into a series of the form

f(x) = j sin x -f~ 2 sin 2x + a8 sin 3x + * * *

(1)

2 /* 2 /
where am= I f(x) sin mx.dx= I /(a) sin ma.da

; (2)

and the series and the function will be identical for all values of x between

x = and x = TT, not including the values x = and x = TT unless

the given function is equal to zero for those values.

An elaborate investigation of the question of the convergence of the series

(1),
for which we have not space, entirely confirms the result formulated

above * and shows in addition that at a point of finite discontinuity the series

has a value equal to half the sum of the two values which the function

approaches as we approach the point in question from opposite sides.

The investigation which we have made in the preceding sections establishes

the fact that the curve represented by y =f(x) need not follow the same

mathematical law throughout its length, but may be made up of portions of

entirely different curves. For example, a broken line or
1

a locus consisting of

finite parts of several different and disconnected straight lines can be

represented perfectly well by y = a sine series.

26. Let us obtain a few sine developments.

(a) Let f(x)=x. (1)

We have x = at sin x + a sin 2x + 8 sin 3x -}- (2)

2 ~
where am = - I a; sin mx.dx

(3)

* Provided the function has not an infinite number of maxima and minima in the neigh

borhood of a point, v. Arts. 37-38.



CHAP. H.J EXAMPLES OF SINE SERIES. 39/^x sin mx.dx = (sin mx mx cos mx).m? v

w

I x sin ma;, cfa; = f-l)
CT 7r

771

and
in a; sin 2# sin

~ ~~ ~
)

Let

am = t sin mx.dx
;

(1)

(2)

cos ma;
sin mx.dx = ,

/sin

Hence

=
(l cos WTT) = -

[1 ( I)&quot;

1

]v L v y J

= if m is even

= if w is odd.m
sinSx ,

sin 5*
(3)

It is to be noticed that (3) gives at once a sine development for any constant

c. It is,

_ 4c /sin x . sin 3x sin 5a; \

TT V 1* 3 5 /

If we substitute x = in (4) (a) or (3) (b) we get a familiar result, namely

f=i-|+M + &quot;-

&amp;lt;
5)

a formula usually derived by substituting x = 1 in the power series for

tan- 1
*, (v. Dif. Cal. Art. 135.)

(4) (a) does not hold good when x = TT, and (3) (b) fails when x = and

when x = TT, for in all these cases the series reduces to zero.

(c)
Let f(x)

= x from a = to x =
^

and /(*)
= TT a; from cc =

-^
to x = TT .

That is, let y= /(*) represent the broken

line in the figure.

As the mathematical expression for

f(x) is different in the two halves of the

curve we must break UD
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*

w &quot;i
T

Cf(x) sin mx.dx into Cf(x) sin mx.dx -f Cf(x) sin mx.dx.

-.

We have, then,
JT

I W

aw= \x sin mx.dx + J (TT a) sin mx.dx (1)
7T

o

4 . 7T

But sin m ^
= 1 if m = 1 or 4& + 1

= &quot; m = 2 &quot; k + 2

= i TO = 3 4A; + 3

= &quot; m = 4 4A .

Hence if y =/(^) represents our broken line
,

4 sin a; sin 3x . sin 5x sin7x
,

When x =
^ /(x)

=
^

and we have

8
=

1 2 + 32 + 52 + 7 2 +

(d) As a case where the function has a finite discontinuity, let

/(x)
= 1 from x = to x = ^

and

7T

y =s
/&quot;(x)

will in this case represent the locus in the figure.

Y As before

/{&amp;gt;

,

it 9

Cf(x) sinmx.dx = Cf(x) sin mx.dx

IT

-{- r/(x) sin mx.dx .

2

IT

2
2 C

Csin mx.dx +-^J
0* siam = -

|
sin??Kc.dx 4- - I 0* sin
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IT

am = -
I sin mx.dx =

(
1 cos m J)

7r% TT m \ 27

But cos m = if m = l or 4&-}-l

&quot; m = 3 &quot;

1 m = 4 &quot;

Hence

2 /sin a;
,
2 sin 2x sinSx sin5a; . 2 sin 6z . sin

f

fx
&quot;&quot; ~~ ~ ~~ &quot;~~ ~~

If cc = the second member of (2) reduces to -
,
for

2/1 11 1 .

and we see that the series represents the function completely for all values of
17T

x between x = and x = TT except for x - and there it has a

value which is the mean of the values approached by the function as x

approaches from opposite sides.

EXAMPLES.

Obtain the following developments :

2 r/7T
8 67T\ /7T

8 67T\-
[(T

-
^) sm x ~

(J
-
-) s

7T
8

.

sm 2x &quot; sm 3x

.,
. 2 Fsinx . TT sinSa; 2?r . sin5o?

(3) /(

^ sin 6z ----
J

,
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if f(x)
= x from x = to x = - and f(x)

= from x = to a; = TT

/JN 2 . r sin a; 2sin2a; . 3sin3x 4sin4a;
(4) sm ^ = - s 22 2

if /A is a fraction.

(5) e* =| [i (1 + *&quot;)
sin x +

| (1
-

e) sm2x + jg (1 + e&quot;)
sin 3*

. , 2 sinh TT rl 2 . . 3 4 1
(6) sinh x =- - sm x r sm 2x + sin 3a; 7^ sm 4a H---- .

7T l_J O 10 17

2 1~~1 2
(7) cosh x = - -

(1 -j- cosh TT) sin a + ^ (1
~ cosh TT) sin 2a;

3 ~I+
r^r (1 + cosh TT) sin 3ic + .

27. Let us now try to develop a given function of a; in a series of cosines.

As before suppose that f(x) has a single value for each value of x between

x = and x = TT, that it does not become infinite between x = and

x = TT, and that if discontinuous it has only finite discontinuities.

Assume

f(x)
= + &i cos aj + ^2 cos 2x -f 3 cos 3x + (1)

To determine any coefficient bm multiply (1) by cos mx.dx and integrate

each term from to TT.

/
b cos mx.dx = 0.

bk cos kx cos mx.dx = ^ |
[cos (m k)x -f cos (w+ tyx^dx

o

= if m and A; are not equal.

/bm cos2 mx.dx = r-
2* C?x + cos mx sin wx),m 2m v n

bm cos2 mx.o^ = 6m ,
if m is not zero.

Hence bm = -
T/() cos Twx.efce = -

T/(a) cos ma.da
, (2)

if m is not ero.
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To get b multiply (1) by dx and integrate from zero to IT.

f
&quot;***

ir

I bk cos kx.dx = 0.

=
^ Cf(x)dx

=
^Hence 5 = ~

(f(x)dx
= -f(a)da, (3)

which is just half the value that would be given by formula (2) if zero were

substituted for ra.

To save a separate formula (1) is usually written

f(x)
= %b + #1 cos x -f #2 cos 2x + ba cos 3x + (4)

and then the formula

2 / 2/= I

o

/= -
I /(a) cos ma.da (2)

o

will give bQ as well as the other coefficients.

It is important to see clearly that what we have just done in deter

mining the coefficients of (1) is equivalent to taking n -f- 1 terms of
(4),

substituting in

y = ^b -f- bi cos x + 2 cos 2a -J- + bn cos nx
(5)

in turn the coordinates of the n + 1 points of the curve

whose projections on the axis of JTare equidistant, determining b
,
bi} bt) bn

by elimination from the n + 1 resulting equations, and then taking the limit

ing values they approach as n is indefinitely increased, (v.
Art. 24.)

IT
If Ax = n-= the abscissas of the n + 1 points used are 0, Ax, 2Ao;,

wAcc, so that we should expect our cosine development to hold for

x = as well as for values of x between zero and TT.

28. Let us take one or two examples :

(a) Let /(*)=* (1)

2

2 / 2 2/= -
J.

x cos 7w*.&amp;lt;*e =^ (cos
mir 1)

=^ [(- 1)
--
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Hence x= (cos x -\ 1
-

2 7r\ 3 2
5*

(2) holds good not only for values of x between zero and IT but for x =
and x = TT as well, since for these values we have

and ,.+
which are true by Art. 26 (c)(3).

() Let f(x) = x sin a? .
(1)

b = I XSilLX.dx=
TTJ 7T

2 r 1 r 1
0i = I sin x cos ie.cfo=-

I x sin 2o%&amp;lt;&; = -
,V &quot;V

bm= j
a; sin x cos w#.&amp;lt;&c =

| [aj
sin (m + 1) a; sin (m l)ic]c?a;

^IT V
if m is odd

2
r- r IT if m is even.

Hence

cos x 2 cos 2x
,
2 cos 3x 2 cos 4#

-.____
4 2 1.3 3.5 5.7

.

-I-

If = we have

EXAMPLES.

Obtain the following developments :

i
cs6a?

,
cos IQx

,
cos 14a;

, &quot;]

&quot;F&quot; ~5^~ ~J1~~ &quot;J

if /() = a; from a;= to a;= and /(cc)
= TT x from a = to x = TT .
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,n\ jy \ 1
t

2
[&quot;COS

X COS 3x . COS 5x COS Ix
(2) f& = + ~---

5

if f(x)= 1 from x = to x = and /(#)
= from x = - to x = TT.

7T
2

. 1 /57T A 2 &quot;I

+
s 2 (T

~
/
cos &quot;&quot;

62
cos 6a; &quot;

J

if /(a;)
= from x = to x = ~ and /(a;)

= from a = - to x = TT.

(6)
* = (^-1) - * ( + !) cos x + i(*- 1) cos 2x

(7)
-

+ cos 4* ---
J

.

2 Fl 1

(8) sinh x = - -
(cosh TT 1) ^ (cosh-TT + 1) cos a;

-f-
-

(cosh TT 1) cos 2x (cosh TT+ 1) cos 3x H----1 .

2ft sin ftTr r 1 cos x
,

cos 2x cos 3x

TT L2ft
2

/*
2 1

cos 4x

(9) cosf^-
I 2^2- 2_i2 2 _ 2 2 u2 -3 a

if
yu.

is a fraction.

29. Although any function can be expressed both as a sine series and as a

cosine series, and the function and either series will be equal for all values of

x between zero and TT, there is a decided difference in the two series for other

values of x.

Both series are periodic functions of x having the period 27r. If then we

let y equal the series in question and construct the portion of the correspond-
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ing curve which lies between the values x = TT and x = IT the whole

curve will consist of repetitions of this portion.

Since sin mx = sin
( mx) the ordinate corresponding to any value of

x between TT and zero in the sine curve will be the negative of the ordinate

corresponding to the same value of x with the positive sign. In other words

the curve

y = &! sin x -\- az sin 2x -{- a sin 3x -J- (1)

is symmetrical with respect to the origin.

Since cos mx = cos
( mx) the ordinate corresponding to any value of x

between TT and zero in the cosine curve will be the same as the ordinate

belonging to the corresponding positive value of x. In other words the curve

y = % 1Q -\- ^ cos x -f- bz cos 2x -\- ba cos 3x -\-
-

(2)

is symmetrical with respect to the axis of Y.

If then f(x)
=

/( x) ,
that is if f(x) is an odd function the sine series

corresponding to it will be equal to it for all values of x between TT and TT,

except perhaps for the value x for which the series will necessarily be

zero.

If f(x) =f(x), that is if f(x) is an even function the cosine series cor

responding to it will be equal to it for all values of x between x = TT and

x = TT, not excepting the value x = 0.

As an example of the difference between the sine and cosine developments

of the same function let us take the series for x .

y = 2 sin x
sin2.r ,

sinSa; sin4a;
(3)

cos 3x~ cos 5x cos 7x

[v. Art. 26(a) and Art. 28 (a)]. (3) represents the curve

and (4) the curve

^ Y
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Both coincide with y = x from x = to x = TT, (3) coincides with

y= x from x = TT to x = TT, and neither coincides with y=.x for

values of # less than TT or greater than TT. Moreover
(3),

in addition to

the continuous portions of the locus represented in the figure, gives the iso

lated points ( 7T,0) (7T,0) (37T,0) &C.

30. We have seen that if f(x) is an odd function its development in sine

series holds for all values of x from TT to TT, as does the development of

f(x) in cosine series if f(x) is an even function.

Thus the developments of Art. 26(a), Art. 26 Exs. (2), (4), (6); Art. 28(fl)

Art. 28 Exs. (3), (7), (9) are valid for all values of x between TT and TT.

Any function of x can be developed into a Trigonometric series to which it

is equal for all values of x between TT and TT .

Let f(x) be the given function of x. It can be expressed as the sum of an

even function of x and an odd function of x by the following device.

identically; but -* ~-^-- is not changed by reversing the sign of x and

is therefore an even function of x\ and when we reverse the sign of x,
s/x\ _ s/_ x\

&amp;lt;&quot;-* ^-- is affected only to the extent of having its sign reversed and
a

is consequently an odd function of x.

Therefore for all values of x between TT and TT

\ cos x -{- bz cos 2x -\- #3 cos 3x -f-
i A

2 f* f(x) -4- f( x)
where bm = I

:L^^ g* f cos mx.dx
;

andV
-f- 2 sin 2a; -f- a9 sin

where am= sin

bm and am can be simplified a little.

J =^
IT

= -
I

Cf(x) cos 7x.c?a; +
/(&quot;&quot;

x) cos ^&quot;^-^
&amp;gt;
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but if we replace x by x, we get

W -IT

I /( %) cos mx.dx = Cf(x) cos mx.dx = \ f(x) cos wx.dce
,

IT

1 /^
and we have bm = I

/(a;) cos mx.dx .

7T/

In the same way we can reduce the value of am to

1 r*
I jn[x) sin mx.dx .

IT

Hence

(/() = 2
&o + &i cos x -f &2 cos 2 -f b8 cos 3# -f )

( + a i sin cc + a2 sin 2x + 8 sin 3aj + )

where bm = Cf(x) cos mx.dx = -
Cf(a) cos ma.da. (3)

IT IT

and am = -
J /(#) sin wx.rfcc = -

J
/(a) sin ma.c?a .

(4)

IT IT

v

and this development holds for all values of x between TT and TT.

The second member of (2) is known as a Fourier s Series.

EXAMPLES.

1. Obtain the following developments, all of which are valid from x = TT

to x = TT:

... 2sinh7rrl 1 . 1 _ 1 1 ~|

(1) e* =-- - -cosx.+ gcos2 cos3a;4- cos4a; + &quot;

. 2 sinh-TT rl 2 . . 3 4 ~|
H--- - sm a?

- sm 2x -h sm 3x sin 4x +

(2)

2 sinh-TT rl 2 . . 3 4- - sm a?
- sm 2x -h sm 3

TT 2 r . cos 3x . cos 5a; . cos 7a;

4--|_
s * + +^ +

.^
sin a; sin 2x

,

sin 3a; sin 4a;
,

~r ~^~ ~3~ ~T~

where f(x)
= from = TT to a?= and f(x)= a; from x= to a;= TT.
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(3) f(x)
= - + -

a
cos x + -

2
cos 2* -h

-
2
cos 3z + - cos 5xa 2 2

2

62I, cos 6* + ]

37T . . /37T &quot;I

-

J
,

where /(x) = x from x = TT to = 0, f(x)
= from sc = to x = -

,

and /() = x -r from x = - to x = TT .

^ *j

2. Show that formula (2) Art. 30 can be written

f(x)
- c cos j8 + ci cos (x ft) + c2 cos (2aj ft) -f- c8 cos (3x ft) H----

where Cm = (a* + * and ft^tan- 1

^.
3. Show that formula (2) Art. 30 can be written

/(*)
=

|
co sin ft + Cl sin

(a; -f ft) + c2 sin (2x + ft) + c8 sin (3x + ft) H----

where cm = (a* + 6J)* and /3m = tan- 1 5a
.

am

31. In developing a function of cc into a Trigonometric series it is often

inconvenient to be held within the narrow boundaries x = TT and x = TT .

Let us see if we cannot widen them.

Let it be required to develop a function of x into a Trigonometric series

which shall be equal to f(x) for all values of x between x = c and a; = c .

Introduce a new variable

7T

=*&amp;gt;

which is equal to TT when x = c and to TT when x = c .

/(x) =/(- )
can be developed in terms of * by Art. 30 (2), (3), and (4).

We have

y/^
z
J
= - b + &! cos 2 + 2 cos 2z + cos 3z + f

,^

+ i sin 2 + #2 sin 2z + a& sin 3* + )

where 6m= Cf( z) cos mz.dz . (2)
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and am= -
I f\~ %\ sin mz.dz .

(3)

IT

and (1) holds good from z = TT to z = IT .

Replace z by its value in terms of x and (1) becomes

1 7TX
,

27TCC . 3lTX
,

f(x)
= -ft + ^ cos -* + a cos -

-f &s cos
- +

C C C

TTX . . 27TX . . 37TX .

+ ! sin h 2 sm |- a8 sin r
c c c

(4)

The coefficients in (4) are the same as in
(1), and (4) holds good from

0: = c to x = c .

Formulas (2)
and (3) can be put into more convenient shape.

1 C d c \ 7 l/&quot;^/\ mirx * j
bm = I f( z } cos mz.dz = -

I f(x) cos -- ctem
TTj

J
\7T I TT J ^ C C

bm= () cos dx =
c c

In like manner we can transform (3) into

c c

1 /^ x mTra; _ 1 / -/% x . WTrA ..

am=
c J /(*)fr &amp;lt;&

=
; J/(*)

8in &

By treating in like fashion formulas (1) and (2) Art. 25 and formulas (4)

and (2) Art. 27 we get

. v . TTX . . . . . ^

f(x) = ! sm --h sin -f- a sm -- + (7)

where = ?
Cf(x) sin ==? &amp;lt;fo

= ?
f/(A)

sin ^-
X A .

c */ c c */ t/
(8)

1 irx . ZTTX . . w ^/
( ^^v

and j(xj
== o ^o T&quot; *i cos r ^2 cos r ^ cos r (&quot;/^2 c c &quot;

where J.= ?
J/^)

cos 2=? &amp;lt;te
=

J/(X)
cos rfX . (10)

and (7) and (9) hold good from x = to x = c .
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EXAMPLES.

1. Obtain the following developments :

4 r . TT.T 1 STTX , 1 fax . &quot;1

(1) i =
-Lsm T +

g
8m +gsm + J

from x = to x = c .

2C r . 7TX 1 2-TTX
,

1 37TX 1 47TZ .
&quot;|

(2) x = sm-- - sin--h sm-- 7 sm --h *
Iv/ 7rL_e2 c 3 c4 c J

from x = * c to aj==c.

TTX . 1 STTX . 1 STTO; 1 TTTCC
S T + ^ COS + P COS +

7
COS

from ic = to x = c .

4\ 7TX 7T
2

. 27T . /7T2 4\

7T
2

. 47T3: . /7T
2 4\ 57TX

-T sin +
(&quot;5 )

sm

from a; = to x = c .

c2 4c2 Tra; 1 27rz . 1 STTJC 1 4?ra;

+
32

cos -j2
cos

from # = c to = c .

4- ec TTO; . 2 (1 e
c
) . 2

in

4(1

47T2

cos 1-

from x = to x = c .

/Kv -, v 4c
|~&quot;

. frx 1 37rx . 1 . OTTX
,

()/(*)
~

2
|_
sln ~

32
sm

~7~ &quot;r

52
S1 ~

J

from x = to x = c
,

where /(x)
= x from x = to x =

|
and /(x)

= c x from x =
^

to
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2. Show that formula (4) Art. 31 can be written

f(x)
= -

CQ cos ft + c\ cos ( ft)
+ ca cos ( ftJ

/STTX
+ C3 COS I ft

where b*W+ W) and ^ = tan
~ 1

^
3. Show tliat formula (4) Art. 31 can be written

f(x)
=

| c&amp;lt;&amp;gt;

sin ft + G! sin (~ -f
ft)

+ c2 sin
(-^p

+
ft)

-f c8 sin ( + ft

where cm = (a* + &JD and fim = tan- x

^

32. In the formulas of Art. 31 c may have as great a value as we please,

so that we can obtain a Trigonometric Series for f(x) that will represent the

given function through as great an interval as we may choose to take. If,

then, we can obtain the limiting form approached by the series (4)
Art. 31 as

c is indefinitely increased the expression in question ought to be equal to the

given function of x for all values of x. Equation (4) Art. 31 can be written

as follows if we replace 6
,
b ft,, i, o, by their values given in

Art. 31 (5)
and (6).

f
j/(X)

cos =* cos= dX
+J&amp;gt;)

cos cos = A + . . .

c c

+
j&amp;gt;(X)

sin
2J

sinS dX+//W
sin^ sin^ rfX +

]

TT\ TTX . . 7T\ . 7TX

4- cos cos h sm sin

7T 2-Tra;
,

2?rX . 2-Tra;

4- cos- cos --h sm- sin - +
c c c c
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+ cos -
c

(\
-

x) + cos ^ (X
-

x) + -

cos x ~ a cos x &quot; *

+ COS
(- ^ (X

-
3) + COS

(- ) (A
-

X) +
since cos

( &amp;lt;)

= cos
&amp;lt;f&amp;gt;

.

f) (*-*&amp;gt;
cos - * ~ * cos

. TT OTT
, x ,

TT TT x

H-- COS- (A X) H-- COS (X X)
c c

v
c c v

+ Z cos ^ (X
-

x) + .

] (1)

As c is indefinitely increased the limiting value approached by the

parenthesis in (1) is
(X

I
cos

a(A. x).da.

co

Hence the limiting form approached by (1) is

Jcos a(X
-

a:).da , (2)

and the second member of (2) must be equal to f(x) for all values of x .

The double integral in (2) is known as Fourier s Integral, and since it is a

limiting form of Fourier s Series it is subject to the same limitations as the

series.

That is, in order that (2) should be true f(x) must be finite, continuous, and

single valued for all values of x, or if discontinuous, must have only finite

discontinuities.*

(2) is sometimes given in a slightly different form.
co oo

Since (cos a(X x).da = j
cos a(X x).da + J

cos a(A. x).da

00 SB00
Tcos a(X x).da

= Tcos
( a) (A. x).d( a)

=
J
cos a(X x).da

-00 00 *

j
cos a(\ x).da

= 2
|
cos a(\ x).da

and
o

* See note on page 38.
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and (2) may be written

f(x)
= i

J/(X)&amp;lt;*xJcos
a(\
-

x).da .
(3)

oo

If f(x) is an even function or an odd function (3) can be still further simpli

fied.

Let /(*)
= -/(-)

Since the limits of integration in (3) do not contain a or X the integrations

may be performed in whichever order we choose. That is

oo oo

Now

f/(X)dX fcos a(X x).da
= Cda f/(X) cos a(X x).d\ .

-oo -so

uu

f/(X) cos a(X x).d\ f/(X) cos a(X x).d\ + f/(X) cos a(X cc).dX .

oo oo

f/(X) cos a(X a).dX
= f/( X) cos a( X x).d( X)

oo oo

oo

= ~&quot;

f/(X) C S
&quot;(^ + C) ^X

and (3) becomes
oo oo

f(x)
= - Cda f/(X) [cos a(X x) cos a(X + x)~\.d\

00 00

= Cda Cf(\) sin aX sin ax.d\

&quot;J J
oo OD

f(x)
= -

f/(XXX Tsin aX sin ax.da . (4)or

If f(x) =/( x) (3) can be reduced in like manner to

f(x)
= -

Cf(\)d\ Ccos a\ cos ax.da . (5)

Although (4) holds for all values of x only in case f(x) is an odd function,

and (5) only in case f(x) is an even function, both (4) and (5) hold for all

positive values of x in the case of any function.

EXAMPLE.

(1) Obtain formulas (4) and (5) directly from (7) and (9) Art. 31.



CHAPTER III.

CONVERGENCE OF FOURIER S SERIES.

33. The question of the convergence of a Fourier s Series is altogether too

large to be completely handled in an elementary treatise. We will, however,

consider at some length one of the most important of the series we have

obtained, namely

4f~ . . sm3x . sin5aj .sin Ix ~\ O^//\T-
^sm

x + h
5

1

^
1

J , [v. (3) Art. 26(5).]

and prove that for all values of x between zero and TT its sum is absolutely

equal to unity ;
that is, that the limit approached by the sum of n terms of the

series

sin x Ain a.da + sin 2x Ain 2a.da -f sin 3x Ain Sa.da + ,

as n is indefinitely increased, is 1, provided that x lies between zero and TT.

Let

Sn = sin x Ain a.da + sin 2x Ain 2a.da -f sin 3x Ain 3a.da -\

JT

+ sin nx Ain na.da . (1)

Then

Sn = (&quot;[sin
a sin x -f- sin 2a sin 2# + sm ^a sm 3a; + h sin na sin nx~\daV

1
*&quot;

= -
T[cos (a 05)

cos (a -f ) + cos 2(a cc) cos 2(a + x)-\

+ cos n(a x) cos n(a + )] ^

= -
T[cos (a x) + cos 2(a x) + cos 3(a x) -\ h cos n(a x)~\da

o

T[cos (a + x) + cos 2(a + *) + cos 3(a + SB) + h cos n(i 4
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Therefore by Art. 20 (1)

1
- sin

(2,1 + 1)
1

, sin (2n + l)

*&quot;5?J

-
~T=^
- ^a

~2^J ~^T^
- da

o sin -
o sin -

In the first integral substitute (3 for -
,
and in the second integral sub-

a -4- x
stitute ft for ~-

.

We get

?_ E +

iVsin^g ikn(2. + l)^
n

It remains to find the limit approached by Sn as n is indefinitely increased.

34. r

r_sin_(27
J sisin 8 2

For

sin

o

Let us construct the curve

= . + cos 2/3+ cos 4^8 H
-----

\- cos 2n/8 , by Art. 20.

smx

We have only to draw the curve y = sin (2n -f l)ic and then to divide

the length of each ordinate by the value of the sine of the corresponding

abscissa.

In y = sin (2n + l)z the successive arches into which the curve is

divided by the axis of X are equal, and consequently their areas are equal.
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?
1

-*.

]

(1

o 4
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In either case each parenthesis is a negative quantity since

and it follows that a is greater than .

2

Again

7T_ , , x , , ,
, N .

a i -f (&a a
s; &quot;r (4 %; -r ~t- (&n _ 2 an -i) ~r an

if 7t is even and

7T_
^

if n is odd.

In either case each parenthesis is positive and it follows that a a is

less than .

Since

a and a a-^ differ from by less than they differ from each other, that

is, by less than av .

In like manner we can show that aQ a: and a % + az differ from

by less than a2 ;
and in general that a % -f- az a8 + ak differs

from by less than ak \
or even that

Zi

7T
P

differs from by less than ak no matter what the value of p, provided p is

greater than unity.

35. From what has been proved in the last article it follows that

6

*-: dx .

sin a;

where b is some value between 7^ :

- and -^ ,
differs from by less than

2n-\-\2i A

the area of the arch in which the ordinate of y= i-^-: correspond-smx

ing to x= b falls if this ordinate divides an arch, or by less than the area

of the arch next beyond the point (b, 0) if the curve crosses the axis of JTat

that point.
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The area of the arch in question is less than - -
,

its base,
Zti

j
1

,
a value greater than the length of its longest ordinate.

sin fb -
-j-r

)

Therefore f
sm

(
2

.

ro + *)* dx
J smx

differs from by less than

59

sin / b

sin ft w sin/3

__
1 rsin(27i+l)/3
?rJ sin/8

^

2

This last value for Sn can be somewhat simplified.

Substituting y = (3 we get
X

If now n is indefinitely increased -
: r approaches

2ri 4- 1 / TT \
sin I ft

^
-T: I

zero as its limit, and we get the very important result

6

limit F C sin (2n + l)a? , n _TT ^\
n= oo

|_J sin x
~
2

o

36 . 4= 33 _* p L

sin (2.1 + 1)0 , 1 sin (2n + I)/?
&quot;

J
&quot;

sin/?

&quot;

rsm(2n + l)fi rsm(2n + l)y d __ pn (n ^

J sin ^8

&quot;

J sin y
y J sin /8

x x
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Substituting y= TT ft in

IT a;

pin(2
+ l)fl wehaye

J sm M
IT

i

? +
* ?_? ?22 22 2

/sin
(2?i + !)/? , /* sin (2n -f l)y , /* sin (2 + !)/? ,^ dp = I *-: ay= I *-: dp
sm/3 J siny / sin/?

7T

2 2

TT ir_x
2 22
sin (2n + l)/3 / sin (2n + l)/8

J sin/2
p J sin0

u

Hence

2 p sin (2n+ 1)/? 2 Vsin (2 + 1)^ 2 A sin (2n+ I)/?=
siu^

^+ ^J ^J~ * ^J
&quot; ~ *

limit F r sin (2n + 1)/? 7 _~| TT . A ^ ^ , ...
, , OJ?_ ._ I ^ ^

dft \=-z if &amp;lt; x &amp;lt; TT by (1) Art. 35
. ^l_/ sin u ^-J

and

limit
rf.n(2

+ l)g &quot;I
IT .

f 0&amp;lt;;c&amp;lt;w by(1)Art. 3g.
=oo| J sm/8 ^J 2

-o

Therefore limit
r^ I = 1 + i - i = 1 if O &amp;lt; TT and

7i= 00 L J

4 F
,
sin 3^c . sin 5x sin 7a? ~1

-Lsm* + + + + ]=!
for all values of x between zero and TT.

37. By a somewhat long but not especially difficult extension of the rea

soning just given it can be shown that if f(x) is single-valued and finite

between x = TT and x = ?r, and has only a ^/rnite number of discon

tinuities and of maxima and minima between cc = TT and x= TT the

Fourier s Series

o &o+ *i cos * + ^2 cos 2.x + ^3 cos 3x H

+ i sin a? + .

a sin 2ic + as sin 3o? -j
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7T

1 C
where am= -

I /(a) sin ma.da
TT\J

n

it

1 r
and 6m = I f(a) cos ma.da

,

Fourier s Series only is equal to f(x) for all values of x between
x = TT and x = TT

, excepting the values of x corresponding to the discon

tinuities of /(), and the values TT and TT if /(TT) is not equal to /( TT);

and that if c is a value of x corresponding to a discontinuity of f(x), the value

of the series when x = c is

and that if /(TT) is not equal to /( TT) the value of the series when x = TT

and when a; = TT is

If f(x) while satisfying the conditions named in the preceding paragraph

except for a finite number of values of x, becomes infinite for those values, the

series is equal to the function except for the values of x in question provided
JT

that
Cf(x)dx is finite and determinate,

(v.
Int. Cal. Arts. 83 and 84.)

IT

38. The question of the convergency of a Fourier s Series and the condi

tions under which a function may be developed in such a series was first

attacked successfully by Dirichlet in 1829, and his conclusions have been

criticised and extended by later mathematicians, notably by Riemann, Heine,

Lipschitz, and du Bois Reymond. It may be noted that the criticisms relate

not to the sufficiency but to the necessity of Dirichlet s conditions.

An excellent resume of the literature of the subject is given by Arnold

Sachse in a short dissertation published by Gauthier-Villars, Paris, 1880,

entitled &quot;Essai Historique sur la Representation d une Fonction Arbitraire

d une seule variable par une Serie Trigonometrique.&quot;

39. A good deal of light is thrown on the peculiarities of trigonometric
series loy the attempt to construct approximately the curves corresponding to

them.

If we construct y = al sin x and y = az sin 2x and add the ordinates

of the points having the same abscissas we shall obtain points on the curve
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y= &! sin x -{- #2 sin 2x .

If now we construct y = a& sin 3x and add the ordinates to those of

y =. 0,1 sin x + a sin 2# we shall get the curve

y = CL-L sin ic + &amp;lt;z2 sin 2# -f- a8 sin 3x .

By continuing this process we get successive approximations to

y &! sin # + #2 sin 2a; + as sin 3cc + #4 sin 4a? +
Let us apply this method to a few of the series which we have obtained in

Chapter II.

Take

y= sin x-}-- sin 3x-\-- sin 5x -f- (1)

= when o; = 0,
- from x = to CC= TT, and when X= TT,

v. Art. 26 [&](3).

y = 2 /sin # - sin 2z -f a sin 3x - sin 4z -f j (2)

= x from x= to x= 7r, and when cc= 7r,

Art. 26[a](4).

y= -
I

jj
sin x -

2
sin 3x + -

2
sin 5x -

2
sin 7x -f

----
I (3)

= x from ic = to x=
,
and TT x from # = -o to # = 7r,

Art. 26 [c](2).

2/
= T sin a; + - sin 2 + - sin 3z + P sin 5x - sin 6x-\--sm7x-\---- (4)1 A O O D /

= when x=
,

- from x = to x =
,
and from x= - to x= TT.

_ Z ^

v. Art. 26

It must be borne in mind that each of these curves is periodic having the

period 2?r, and is symmetrical with respect to the origin.

The following figures I, II, III, and IV represent the first four approxima

tions to each of these curves.

In each figure the curve y = the series, and the approximation in question

are drawn in continuous lines, and the preceding approximation and the curve

corresponding to the term to be added are drawn in dotted lines.
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\

,-~,

y ,- - - ^ ^^ ^X^X T^

\--** X-N , -&amp;gt;A
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x

\

IV

\
*

;\

\

/x\
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Tigs. I, II, III, and IV immediately suggest the following facts :

(a) The curve representing each approximation is continuous even when

the curve representing the series is discontinuous.

(b) When the curve representing the series is discontinuous the portion of

each successive approximate curve in the neighborhood of the point whose

abscissa is a value of x for which the series curve is discontinuous approaches

more and more nearly a straight line perpendicular to the axis of X and con

necting the separate portions of the series curve.

(c)
The curves representing successive approximations do not necessarily

tend to lose their wavy character, since each is obtained from the preceding

one by superposing upon it a wave line whose waves are shorter each time but

do not necessarily lose their sharpness of pitch. This is the case in Figures

I, II, and IV. In Fig. Ill the waves of the superposed curves grow rapidly

flatter.

It follows from this that in such cases as those represented in Figures I, II,

and IV the direction of the approximate curve at a point having a given

abscissa does not in general approach the direction of the series curve at the

corresponding point, or indeed, approach any limiting value, as the approxima

tion is made closer and closer; and that the length of any portion of the

approximate curve will not in general approach the length of the correspond

ing portion of the series curve.

Analytically this amounts to saying that the derivative of a function of x

cannot in general be obtained by differentiating term by term the Fourier s

Series which represents the function.

(d) The area bounded by a given ordinate, the approximate curve, the axis of

X, and any second ordinate will approach as its limit the corresponding area of

the series curve if the series curve is continuous between the ordinates in

question; and will approach the area bounded by the given ordinate, the series

curve, the axis of X, any second ordinate, and a line perpendicular to the axis

of X, and joining the separate portions of the series curve if the latter has a

discontinuity between the ordinates in question.

Analytically this amounts to saying that the Fourier s Series corresponding

to any given function can be integrated term by term and the resulting series

will represent the integral of the function even when the function is

discontinuous
(v.

Int. Cal. Art. 83).

We may note in passing that if the function curve is continuous a curve

representing the integral of the function will be continuous and will not

change its direction abruptly at any point; while if the function curve is dis

continuous the curve representing the integral will still be continuous but will

change its direction abruptly at points corresponding to the discontinuities of

the given function.
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40. The facts that the derivative of a Fourier s Series cannot in general be

obtained by differentiating the series term by term and that its integral can be

obtained by integrating the series term by term are so important that it is

worth while to look at the matter a little more closely. Let us consider the

differentiation of the series represented in Art. 39 Figure I.

Let

Sn = sin x + Q
s in &e + -= sin 5x + + .

1
sin (2n + 1)#.o o 2iii ~p 1

Then -r-2 = cos x -f- cos 3x + cos 5x + -f cos (2n -f l)x.dx

dx

and the curve is parallel to the axis of X for x= no matter what the

value of ft.

If x = or x = TT

and the curve y=Sn becomes more nearly perpendicular to the axis of X
at the origin and for x = TT as we increase ?i.

g-l-l+l-
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41. In general if we differentiate a Fourier s Series

1
S= ~ #o ~r ^i cos x -\- b2 cos 2x -f- bs cos 3x +

+ i sin x -|- a2 sin 2# -f- a3 sin 3# + * *

we get
b: sin x 2b2 sin 2x 3bs sin 3x

+ ai cos x -f 2a2 cos 2x -f- 3a8 cos 3# -f-
* * *

Differentiate again and we get

&! cos x 2 262 cos 2x 32bs cos 3x

! sin x 22a2 sin 2x 3\ sin 3x

We see that each time we differentiate we multiply the coefficient of sin kx

and of cos kx by k while the term still involves cos kx or sin kx .

Since the series

cos x -f- cos 2x -{- cos 3x -f-
* *

-f- sin x -f- sin 2x -\- sin 3x -f-

is not convergent, and a Fourier s Series converges only because its coefficients

decrease as we advance in the series, the differentiation of a Fourier s Series

must make its convergence less rapid if it does not actually destroy it, and

repetitions of the process will usually eventually make the derived series

diverge.

It is to be observed that the derived series are Fourier s Series, but of some

what special form, that is they lack the constant term. (v. Art. 30.)

If now we integrate a Fourier s Series

o #o ~h ^i cos x -\- b2 cos 2x -f- ^3 cos 3x -f-
* *

2

+ % sin x -f- 2 sin 2x + as sin 3x -f-

we get C+ o ^o35 ~i~ ^i s^n ^ H~ 7T ^2 sin 2x-\--bs sin 3x +
i Z O

1 I
! cos x -

2 cos 2,x 7? a3 cos 6x
,

A O

a Trigonometric Series which converges more rapidly than the given series.

It is to be observed that the series obtained by integrating a Fourier s

Series is not in general a Fourier s Series owing to the presence of the term

$box. (v.
Art. 30.)

42. We are now ready to consider the conditions under which a function of

x can be developed into a Fourier s Series whose term by term derivative shall

be equal to the derivative of the function.
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Let the function f(x) satisfy the conditions stated in Art. 37. Then there

is one Fourier s Series and but one which is equal to it. Call this series S.

Let the derivative f(x)* of the given function also satisfy the conditions

stated in Art. 37. Then f(x) can be expressed as a Fourier s Series. By Art.

39 (d) the integral of this latter series will be equal to the integral of / (#),

that is to f(x) plus a constant, and one integral will be equal to f(x) .

If this integral which is necessarily a Trigonometric Series is a Fourier s

Series it must be identical with S. It will be a Fourier s Series only in case

the Fourier s Series for f (x) lacks the constant term %bQ .

But = 1
Cf(x)dx by (3) Art. 30.

Therefore b = [/(TT) -/(- TT)] ;

and will be zero if /(TT) =/( TT) .

In order that f (x) shall satisfy the conditions stated in Art. 37 f(x) while

satisfying the same conditions must in addition be finite and continuous

between x = TT and x == TT.

If, then, f(x) is single-valued, finite, and continuous, and has only a finite

number of maxima and minima, between x = TT and x = TT, (the values

x = TT and x TT being included), and if /(TT) =/( TT) f(x) can be

developed into a Fourier s Series whose term by term derivative will be equal

to the derivative of the function.

It will be observed that in this case the periodic curve y = S is continuous

throughout its whole extent.

43. Since a Fourier s Integral is a limiting case of a Fourier s Series the

conclusions stated in this chapter hold, mutatis mutandis for a Fourier s

Integral.

For example if a function of x is finite and single-valued for all values of x

and has not an infinite number of discontinuities or of maxima and minima in

the neighborhood of any value of x it will be equal to the Fourier s Integral

/(A) cos a
(A. x).d\

and to that Fourier s Integral only, and the integral with respect to x of this

Fourier s Integral will be equal to Cf(x)dx.

If in addition f(x) is finite and continuous for all values of x the derivative

of the Fourier s Integral with respect to x will be equal to

* We shall regularly use the notation f(x) for -^ . v. Dif. Cal. Art. 124.



CHAPTER IV.

SOLUTION OF PROBLEMS IN PHYSICS BY THE AID OF FOURIER S

INTEGRALS AND FOURIER S SERIES.

44. In Art. 7 we have already considered at some length a problem in

Heat Conduction which required the use of a Fourier s Series. We shall begin

the present chapter with a problem closely analogous in its treatment to that

of Art. 7, but calling for the use of a Fourier s Integral.

Suppose that electricity is flowing in a thin plane sheet of infinite extent

and that the value of the potential function is given for every point in some

straight line in the sheet, required the value of the potential function at any

point of the sheet.

Let us take the line as the axis of X and consider at first only those points

for which y is positive :

We have, then, to satisfy the equation

(1)

subject to the conditions

F=0 when y= oo (
2)

r=f(x) y= (3)

where f(x) is a given function, and we are not concerned with negative

values of y.

As in Art. 7 we have e~ ay sin ax and e~ ay cos ax as particular values of V
which satisfy (1) and

(2). We must multiply them by constant coefficients

and so combine them as to satisfy condition
(3).

By (3) Art. 32

- 00 00

f(x) = - Cda f/(A) cos o(X x).d\. (4)

00

We wish to build up a value of V which will reduce to (4) when y= 0.

This requires a little care but not much ingenuity.
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Take e~ av cos ax and ^&quot;^sinaa; and multiply the first by cos aX, and

the second by sin aX
; they are still values of V which satisfy (1). Add

these and we get

e~ ay
cosa(X x),

still a value of V which satisfies (1), no matter what the values of a and X.

Multiply by f(\)d\ and we have

e-VM cos a(X
-

x).d\ (5)

as a value of V which satisfies (1).

V= Ce- a
yf(\)cosa(\ x).d\ (6)

00

is still a solution of (1) since it is the limit of the sum of terms covered by
the form (5) ;

and finally

.00 oo

V= - Cda Ce~*yf(\) cos a(A x).d\ (7)

is a solution of (1) as it is multiplied by the limit of the sum of terms

formed by multiplying the second member of (6) by da and giving different

values to a.

But (7) must be our required solution since while it satisfies (1) and
(2),

it

reduces to (4) when y= and therefore satisfies condition (3).

If f(x) is an even function we can reduce (7) to the form

00 00

V= - Cda Ce-vf(\) cos ax cos a\.d\ (8)

and if f(x) is an odd function to the form

9
V=- Cda jV

ay
/(X) sin ax sin a\.d\. (9)

(7), (8), and (9) are valid only for positive values of y, but as the problem is

obviously symmetrical with respect to the axis of X, (7), (8),
and (9)

enable

us to get the value of the potential function at any point of the plane.

EXAMPLES.

1. Obtain forms (8) and (9) directly by the aid of (5) and (4) Art. 32.

2. State a problem in statical electricity of which the solution given in

Art. 44 is the solution.
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45. As a special case under Art. 44 let us consider the problem: To tind

the value of the potential function at any point of a thin plane sheet of infinite

extent where all points of a given line which lie to the left of the origin are

kept at potential zero, and all points which lie to the right of the origin are

kept at potential unity.

Here f(x)
= if x&amp;lt;0 and f(x)

= l if x&amp;gt;0.

(7) Art. 44 gives us the required solution. It is

.00
=- Cda ^cos a(\ x).d\ ; (1)

but this can be much simplified.

We have

V- Cd\ Ce~ avcos a(\ x).da.

/* a
Now e~ ax cosmx.dx =

-J-T-

\f a&amp;gt;0. (Int. Cal. Art. 82, Ex. 8.)

Hence | e- ay cosa(\ x).da=J

and consequently

K.
(2)

7T\ ?/ 7T C

Since log = log (x -f yi)
= -

log (x
2+ y

2
) + i tan~ x

| ,

[Int. Cal. Art. 33 (2)],

7T 7T 47T \ 7T X

and 1-- tan~ J and log (x* -f- y
2
) are conjugate functions, (v. Int.

f7T 3& *Jr

Cal. Arts. 209 and 210.) Hence

^-^log^+ y
2
) (3)

is a solution of the equation

O; (4)
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and the curves

and

SOLUTION OF PROBLEMS IN PHYSICS. [ART. 45.

-
log (3*+^= ft (6)

cut each other at right angles.

If we construct the curves obtained by giving different values to a in
(5) we

get a set of equipotential lines for the conducting sheet described at the begin

ning of this article, and the curves obtained by giving different values to (b) in

(6)
will be the lines offlow.

Moreover since _ 1
2

.

2?r

is a solution of Laplace s Equation (4),
the lines of flow just mentioned will be

equipotential lines for a certain distribution of potential, for which the equi

potential lines above mentioned will be lines of flow.

V=a, that is

reduces to = x tan air .

If now we give to a values differing by a constant amount we get a set of

straight lines radiating from the origin anal at equal angular intervals.

Vi = b, that is

ft, (6)

reduces to

e~. (8)

If we give to b a set of values differing by a constant amount we get a set

of circles whose centres are at the origin and whose radii form a geometrical

progression. They are the equipotential lines for a thin plane sheet of infinite

extent where the potential function is kept equal to given different constant

values on the circumferences of two given concentric circles or where we have

a source at the origin; and for this

system the lines (7) are lines of flow,

and (3) is the complete solution.

The figure gives the equipotential

lines and lines of flow for either sys

tem, but only for positive values of y.

The complete figure has the axis of X
=i as an axis of symmetry.
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EXAMPLES.

1. Solve the problem of Art. 44 for the case where

/()= ! if x&amp;lt;0 and /() = 1 if x&amp;gt;0.

Ans., F=-tan- 1 -.
TT y

2. Solve the problem of Art. 44 for the case where

f(x)
= a if x&amp;lt;0 and

f(x)=l&amp;gt;
if x&amp;gt;0.

Ans., r=i a

3. Reduce (7), (8), and (9) Art. 44 to the forms

=-(fjr +J

^
respectively.

46. An especially interesting case of Art. 44 is the following where

/(aj)
= if x&amp;lt;-l, /() = ! if -

1&amp;lt; a; &amp;lt; 1
,
and /(x)

= if x&amp;gt;l.

Here F= - rtan- 1^^ + tan- 1 in^l
. m

TrL y y J

Now i
log [(1

-
)i]
= i

log [(1
-

a;
-

yi)i]
= i

log [y+ (1
-

*&amp;gt;]

= log [(1
-

a;) + y] +
and

7T 7T

i, 1 2 i, (i z)
2
+?/

2
,

ir ,1+z, ,1 n-
log = log ^j :

;

7

4-
- tan- 1 !

\- tan-
1

.

TT 1 a 2?r
(1-f&quot;*) Ty TT L y 2/ -J
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Hence
1 L I J+S . i

1 ~ ^\ IT (1 X)
2+ ?/

2

-(tan-
1--htan- 1-

)
and log ^--. (. \ \7r\ y y / 27r

&
(1 + xY+ y

2

are conjugate functions;* and

tan- 1 = a (2)7T y y/
is any equipotential line, and

any line of flow for the system described at the beginning of this article
;
and

&amp;gt;

is the solution of a new problem for which (3) represents any equipotential
line and (2) any line of flow.

* The function conjugate to

might have been found as follows. If
&amp;lt;/&amp;gt;

is the required function and
\f/
the given function we

have by Int. Cal. Arts. 211, 212, and 213 the relations

Dx
&amp;lt;f&amp;gt;

= Dy^ and Dy &amp;lt;f&amp;gt;

= Dxf .

1
~

l+x 1 x

If now we integrate Dy^ with respect to x treating y as a constant and add an arbitrary

function of y we shall have
&amp;lt;f&amp;gt;

. So that

= ~
j {

log [(1 + x)2 + y2
]
-

log [(1
-

i

Comparing this with its equal Dx\f/
above we find -&quot; and /(y)

= a constant

therefore 2^(1 + ) +
+ C

where C may be taken at pleasure, is our required conjugate function.
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(2) reduces to

2 . 2 -i

= *an a7r

and (3) to z2+y2+2^

75

(5)

+ 1=0

or

or
(a; + ctnh &7r)

2
-f if

=
(6)

(5) and (6) are circles. The circles (5) have their centres in the axis of Y
f

and pass through the points (1,0) and (1,0); and the circles (6) have their

centres in the axis of X.

(4) is the complete solution, (6) is any equipotential line and (5) any line of

flow for a plane sheet in which the points in the circumferences of two given

circles whose centres are further apart than the sum of their radii are kept at

different constant potentials, or where a source and a sink of equal intensity

are placed at the points ( 1, 0) and
(1, 0). An important practical ex

ample is where two wires connected with the poles of a battery are placed

with their free ends in contact with a thin plane sheet of conducting material.

The figure shows the equipotential lines and lines of flow of either system.

The complete figure would have the axis of X for an axis of symmetry.

1. Show that if /() = ax when JB &amp;lt; *
, /() = a2 when * &amp;lt; x &amp;lt; b

,

f(x) = a8 when a; &amp;gt; b
,

A 1 /-v ^

2 aj) tan-1 1- ( 2 s)
tan&quot;

1
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2. Show that if /(aj)=0 if
x&amp;lt;0,f(x)

= a 1 if &amp;lt; x &amp;lt; blt f(x)
= az if

b1 &amp;lt;x&amp;lt;bz , f(x)
= a3 if 62 &amp;lt; x &amp;lt; b3 . &c.,

F= at tan&quot;
1 -

-|- (i 2) tan&quot;
1

1- (a, a,8) tan&quot;
1

TTL y y y

,y -I

3. Show that if f(x)
= 1 if x &amp;lt; 1, /(re)

= re if
l&amp;lt;re&amp;lt;l,

4. Show that if f(x)
= 1 if a &amp;lt; 1

, /() =0 if 1&amp;lt; a &amp;lt; 1
,

f(z)
= l if

aj&amp;gt;l,

T̂
1 T , 1 + , 1 - aHF=- tan&quot;

1 !--
tan&quot;

1-
.wL y y J

Show that the equipotential lines are equilateral hyperbolas passing through
the points ( 1, 0) and

(1, 0), and that the lines of flow are Cassinian ovals

having ( 1,0) and
(1, 0) as foci. The lines of flow are equipotential lines

and the equipotential lines are lines of flow for the case where the points

( 1, 0) and (1, 0) are kept at the same infinite potential, or where very small

ovals surrounding these points are kept at the same finite potential. The case

is approximately that of a pair of wires connected with the same pole of a

battery whose other pole is grounded, and then placed with their ends in con

tact with a thin plane conducting sheet.

5. Show that if f(x)=Q if x &amp;lt; 0, f(x)
= 1 if 0^x&amp;lt;a, f(x)=0

if a&amp;lt;x&amp;lt;b, and
/(re)

= 1 if x&amp;gt;b,

1 r-TT .a x ,b x .x~\
V=-\ - tan- 1-- tan- 1-- tan- 1 -

.

TT L 2 y y yj

The conjugate function

V =
2^ log

[(a-aO

is the solution for the case where a sink and two sources of equal intensity lie

on the axis of X, the sink at the origin and the sources at the distances a and

b to the right of the origin. One of the lines of flow is easily seen to be the

circle x2
-\- y

2= ab .

47. If the plane conducting sheet has two straight edges at right angles

with each other and one is kept at potential zero while the value of the poten-
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tial function is given at each point of the second, that is if F= when
z = and V=f(x) when

2/
= 0, the solution is readily obtained. It is

V=
I
da ( e~ a

vf(\) sin ax sin

v. (9) Art. 44.

This reduces to

v. Ex. 3 Art. 45.

EXAMPLES.

1. If F=0 when y= and V=F(y) when ce = show that

2 r rV~~\ da
\
e
~ ax

F(X) sin ay sin aA.c^A.

o o

2. If V=f(x) when y= and V=F(y) when o; = show that

3. If F(y)
= 6 the result of Ex. 2 reduces to

4. If F(y) = l for &amp;lt; y &amp;lt; 1 and F(y)=Q for y&amp;gt;l while /()
for &amp;lt; a &amp;lt; 1 and f(x)

= for a; &amp;gt; 1

n-i ^=^ - tan-* i + 2 tan-i 2
y y x

+ tan-^- tan-
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5. If one edge of the conducting sheet treated in Art. 47 is insulated, so that

DXV=0 if x = and V=f(x) when y =

cos ax cos aX.dX

48. If the conducting sheet is a long strip with parallel edges one of which
is at potential zero while the value of the potential function is given at all

points of the other, that is if V=0 when y = and V=F(x) when

y= b the problem is not a very difficult one.

Since we are no longer concerned with the value of V when y= oo

F= eay sin ax and V= e
a* cos ax are available as particular solutions of the

equation

D*r+D&amp;gt;v=Q (i)

as well as V= e~ ay sin ax and V=e--y cos ax .

(&y _l_ p-y
Consequently sin ax = cosh ay sin ax [Int. Cal. Art. 43 (2)]

e*y e-*v
and sin ax = sinh ay sin ax [Int. Cal. Art. 43 (1)]

and cosh ay cos az and sinh ay cos a#

are now available values of Fand can be used precisely as e~ ay cos ax and

e~ ay sin ax are used in Art. 44.

Following the same course as in Art. 44 we get

oo

as a solution of (1) which will reduce to V= F(x) when y= b

and to V=0 when y = ,
since sinh = - =

,

and (2) is therefore our required solution.

If V is to be equal to zero when y= b and to f(x) when y= we have

only to replace y by b y and F(x) by f(x) in (2).
We get
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If V=f(x) when y= and V=F(x) when y= b then

00

This can be considerably simplified by the aid of the formula

. WTT
. , sin -

C sinh px TT q
I . . cos rx.dx =
J sinh qx 2q PTT , , iir
o cos (- cosh

if
p*&amp;lt;q

2
. [Bierens de Haan, Tables of Del Int. (7) 265] and becomes

d\

^ 7r(b ?/) . . TT
-* cos x

,

J;
4- cosh - (\

1 7T?/ / _, /x N

-^ sm -f I m)2b b J ^

-* cos -f- -}- cosh (A. x]

or

2*
S1 &quot;

* i. kosh f (X
-

x)
- cos7

+
cosh f (A

-
*) + cos

EXAMPLES.

1. Given the formula

f . .** ,
= = tan- tanh if b &amp;gt; aJ a + b cosh x v^^^ V ^^ +

&quot;&quot; &quot;

2/

show that if V=I when ?/
= and V= when y= ^ F= -

(i y) .

2. Show that if F=0 when y=i, F= 1 when y= and
a; &amp;lt;

,
and V= 1 when ?/

= and x &amp;gt;

. TTX
tanh --

&quot;n

The solution for the conjugate system, that is, for a strip having a source at

(0, 0) and an infinitely distant sink is



80 SOLUTION OF PROBLEMS IN PHYSICS. [ART. 48.

3. Show that if V \ when y = and x&amp;lt;0, F=l when y=
and x &amp;gt;

,
F= 1 when y= b and x &amp;lt;

,
and F= 1 when

y= and .r &amp;gt;
,

F= - tan- 1

(tan ^ (b y) tanh ^) + - tan- 1

(tan ^ y tanh^
7T \ Zt&amp;gt; AU 7T \ Zc&amp;gt; Zb

= tan&quot;
1

7T

TTiC

The solution for the conjugate system, that is, for a strip having a source and a

sink at the points (0, 0) and
(0, b) is

. TTX . Try
coshT+ cos

V= -
log
- .

7T L_ TTX TTVJ
cosh cos -f

1
&quot;

b b

4. If F=0 when x = Q, V= f(x) when y = and x&amp;gt;0, and F=0
when y= b and a? &amp;gt;

,

: [cos a(X x) cos a
sinh

1 Try fr=
2rm tJ[

oosh (X
-

x)
- cosS cosh (X + a)

- cos

for positive values of x and for values of y betweeen and b.

5. If Fi = when cc^O, ^1 = ^(0;) when y=6 and x&amp;gt;0, and

F! = when y= and cc &amp;gt; ^

=1 sin

cosh X + x + cos

for positive values of cc and values of y between and b.

6. If F2 =0 when 3 = 0, F2 =/() when y = and a; &amp;gt; 0, and

Vt = F(x) when y= b and aj &amp;gt;

.F2 =F+F! for x&amp;gt;0 and 0&amp;lt;7/&amp;lt;6. (v.
Exs. 4 and 5)

7. If one edge of the strip described in Art. 48 is insulated so that we have

F=/() when y= and D
yV=b when ?/

= show that

= 1 Cda ftrj J cosh /(X) cos a(X
-
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By the aid of the formula

f
COShpX 7T

: cos rx.ax =
cosh qx q

, T7T
cosh cos

2 /

P7Tr ii . . ? 7T
cos h cosh

q q

[Bierens de Haan, Def. Int. Tables (6) 265] ,

reduce this to

81

if P &amp;lt;

1 . 7T?7 /*
&quot; x

ft

Sm
2ftJ

&quot;

~^
_ ao

cosh
j (\ x) cos

y-

8. If F=0 when 7/
= 05 6 and x&amp;lt; a, V=l when ?/

= or b

and
a&amp;lt;x&amp;lt;a, and F=0 when y= or Z&amp;gt; and x &amp;gt; a

V=-
7T

sinh

il

sm 7T?/
4-tan-

. , It I tt- ^ JL, I

sinh ^ -

1

1?ry _|
sin ^i-

ft

9. If K=0 when ?/
= or b and x&amp;lt;

,
V= 1 when y= and

a&amp;lt;z&amp;lt;a, T=0 when y = or b and
&amp;gt;, and V= 1 when

= ft and a &amp;lt; ic &amp;lt;C a

r=-
7T

tanh

TTt/
tan -

tan

10. A system conjugate to that of Ex. 9 is F= + cc when y = or ft

and x = a, F= oo when y = or ft and x= a. In this case

sin 2 - + sinh2 ^- -

Tr 1
-i

ft ft

F=--log - -.^
rinia+ rinhil&ltf)

ft ft

49. Let us take now a problem in the flow of heat. Suppose we have an
infinite solid in which heat flows only in one direction, and that at the start the

temperature of each point of the solid is given. Let it be required to find the

temperature of any point of the solid at the end of the time t.

Here we have to solve the equation

(i)

= 0.
(2)

[v. Art. 1 (n)] subject to the condition

u=f(x) when
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As the equation (1) is linear with constant coefficients we can get a particu

lar solution by the device used in Arts. 7 and 8.

Let u= eP
t + ax and substitute in

(1).
We get

as the only relation which need hold between (3 and a.

Hence u= e*+ &quot;2a2 &amp;lt; = e
2

&quot;
2

e** (3)

is a solution of (1) no matter what value is given to a.

To get a trigonometric form replace a by ai.

Then M= er-^e*1
.

If in (3) we replace a by ai we get

As in Arts. 7 and 8 we get from these values

u &~ a2a2&amp;lt; sin ax and w= e~ a2*2
cos az

as particular solutions of (1),
a being wholly unrestricted.

From these values we wish to build up a value of u which shall reduce to

f(x) when = and shall still be a solution of (1).

We have f(x)
= 1 CdaCf(\) cos a (A

-
x).d\ (4)

30

v. Art. 32 (3),
and by proceeding as in Art. 44 we get

u= - Cda fe- a&amp;gt;aW

/(A) cos a(A x).d\ (5)

TJV/ */
oo

as our required value of u.

This can be considerably simplified.

Changing the order of integration
oo

2a2
cosa(A x).da. (6)

la = \l e~ 4a2 (7)

+J ZtU * u

by the formula

Ce- a cos bx.dx =^ e-5 [Int. Cal. Art. 94 (2)]
I 2a

o

00

Hence &quot; =
2ofe/

/(X) r^*k &quot; ^
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\
.y.

Let now ft= -^ ,

then X = x + 2a&amp;lt;fi.ft

EXAMPLES.

1. Let the solid be of infinite extent and let the temperature be equal tc a

constant c at the time t = .

Then u =

v. Int. Cal. Art. 92
(2).

2. Let u= x when = 0.

Then u= 4=(x + 2afi.ft) e-Pdft= x.

3. Let u= x* when t= 0.

Then u

4. Let u= if x&amp;lt; b, u=l if
b&amp;lt;x&amp;lt;b, and u= if

x&amp;gt;^,

when t= .

Then
6 a;

M=J_re
- e^__ j_TJ ^8+ 3&r y+io^^ &amp;gt;

+5fa*_ .1
^rJ V^Ua 32o&amp;gt; 5.2!2a^ 6 J

5. Let w= if a&amp;lt;0 and w= l if ic&amp;gt;0 when = 0.

6. An iron slab 10 c. m. thick is placed between and in contact with two
very thick iron slabs. The initial temperature of the middle slab is 100, and
of each of the outer slabs 0. Required the temperature of a point in the
middle of the inner slab fifteen minutes after the slabs have been put together.
Given a3= 0.185 in C.G.S. units. Ans., 21.6.
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7. Two very thick iron slabs one of which is at the temperature and the

other at the temperature 100 throughout are placed together face to face.

Find the temperature of each slab 10 c. m. from their common face fifteen

minutes after they have been placed together. Ans., 70.8, 29.2.

8. Find a particular solution of Z&amp;gt;

t
u= a2Du on the assumption that it

is of the form u = T.X where T is a function of t alone and X is a function

of x alone.

50. If our solid has one plane face which is kept at the constant tem

perature zero, and we start with any given distribution of heat, the problem is

somewhat modified.

Take the origin of coordinates in the plane face. Then we have as before

the equation
D

t
u= a*D2u, (1)

but our conditions are

u= when x = Q (2)

u=f(x) t = (3)

and we are concerned only with positive values of x.

We may then use the form (4) Art. 32

oc oo

f(x) = - Cda f/(A.) sin ax sin a\.d\ , (4)

o o

and proceeding as in the last section we get

u= - Cda Ce-^ fQ^) sin ax sin a\.d\ (5)

o o

as our required solution. This may be reduced considerably-.

1 /? r
u= -

i
/(*)&amp;lt;&. J

&-&amp;lt;** [cos a(\ x) cos a(A + x)&quot;]da,

00

or u = l
f/(X) (e~ ^Sr er

(J

^lr)d\ (6)

2aV/7rto

by (7) Art. 49, and this may be reduced to the form

u= a. 2a. -e - x+ 2a.^)^ - (7)

EXAMPLES.

1. Let the initial temperature be constant and equal to c.
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Then

2aVt

=^\^_ i_+_^ ^ +
VTT i-2a^t 3.(2a^)

3

5.2!(2ay)
6

7.3!(2ay^)
7

2. Assuming that the earth was originally at the temperature 7000 Fahren
heit throughout, and that the surface was kept at the constant temperature 0,
find (1) the temperature 10 miles below the surface 10,000,000 years after the

cooling began; (2) the temperature 1 mile below the surface at the same

epoch; (3) the temperature 10 miles below the surface 100,000,000 years after

the cooling began; (4) the temperature 1 mile below the surface at the same

epoch; (5) the rate at which the temperature was increasing with the distance
from the surface at each point at each epoch.

Neglect the convexity of the earth s surface and take Sir Wm. Thomson s

value of a2

(400) the foot, the Fahrenheit degree, and the year being taken as

units. (Thomson and Tait s Nat. Phil. Vol. II. Appendix.)
Ans., (1) 3114; (2) 329.5; (3) 1036; (4) 103; (5) 1 for every 20 feet, 3

for every 50 feet, 1 for every 50 feet, 1 for every 50 feet.

3. Let the initial temperature be constant and equal to b
,
then by Ex. 1

X

2aVi

2b r
e
.

4. Let the temperature of the plane face be b instead of zero, and let the
initial temperature be zero.

Then we have only to add b to the second member of the solution in Ex. 3,

as we may since u = b is a solution of (1) Art. 49, and we get

SaVt

5. Let u= b when x = and u= f(x) when = 0.

Then

ZaVt (A -

by (6) Art. 50.
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6. Let u b when x= and u= c when t^=Q.

Then w== & + (&amp;lt;._&)

7. If the earth has been cooling for 200,000,000 years from a uniform tern

perature, prove that the rate of cooling is greatest at a depth of about 76

miles, and that at a depth of about 130 miles the rate of cooling has reached
its maximum value for all time. Let az 400.

8. Show that if the plane face of the solid considered in Art. 50 instead of

being kept at temperature zero is impervious to heat

tt=
i=J/(A)(fl

**
+e~ **

)d\. v. (6) Art. 50.

51. If the temperature of the plane face of the solid described in Art. 50
is a given function of the time and the initial temperature is zero, the solution

of the problem can be obtained by a very ingenious method due to Kiemann.
Here we have to solve the equation

D
t
u= a*Dx u (1)

subject to the conditions

u = F(t) when x = ^
i (2)

u= *= 0.)
We know that

is a solution of
(1), v. Ex. 1 Art. 50. It is easily shown that

(3)

where c is anv constant, is a solution of
(1).

For

2 x 1
*

x _|
J*

g = _
\7r2aVt c

and
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Let
&amp;lt;f&amp;gt;(x, t) be a function of x and I which shall be equal to zero if t is

negative and shall be equal to

if t is equal to or greater than zero; so that if a=
&amp;lt;f&amp;gt;(x,

i)
= l and if

t=
&amp;lt;f&amp;gt;(x,t)=Q.

We shall now attack the following problem, to solve equation (1) subject to

the conditions

u= if t=
u= F(0)

&quot; x= and &amp;lt; t &amp;lt; T

u=
F(kr)&quot;

x=
kr&amp;lt;t&amp;lt;(k + l)r,

where k is any whole number and T is any arbitrarily chosen interval of time.

If we form the value

u= F(kr) [&amp;gt;(*,
t- kr) -&amp;lt;j&amp;gt;(x t t-(k + l)r)] (4)

u will satisfy equation (1) since zero, unity and

are values of u which satisfy (1). ? will be zero if t&amp;lt;kr by the definition

of the function
&amp;lt;j&amp;gt;(x, *); if #= w = if

&amp;gt;(&-J-l)r
and u= F(kr) if

Therefore

*=00

(5)

is the solution of the problem stated above.

(5) can be simplified somewhat from the consideration that for a given value

of t
&amp;lt;(&amp;gt;, tkr)=0 if kr&amp;gt;t. If, then, nr is the greatest whole multiple

of T not exceeding t,

k=n

u=^ F(kr ) [&amp;gt;(*,*

-
kr) -j(x,t-(k + l)r)] . (6)

If now we decrease T indefinitely the limiting form of (6) will be the solu

tion of the problem stated at the beginning of this article.

(6) may be written
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and if r is indefinitely decreased the limiting form of (7) is

t

Since t X is positive between the limits of integration

and (8) may be written
t &

&quot; ** 4^zTt TV ^ ~w*^t A) /i ^^ \ \ _ 7\ /O\

or if we let ft
=

,

8. (10)

EXAMPLES.

1. If t/= nt when cc = and w= when t=

2. A thick iron slab is at the temperature zero throughout, one of its plane

faces is then kept at the temperature 100 Centigrade for 5 minutes, then at

the temperature zero for the next 5 minutes, then at the temperature 100 for

the next 5 minutes, and then at the temperature zero. Required the tem

perature of a point in the slab 5 c.m. from the face at the expiration of 18

minutes. Given; a2= .185. Arts., 20.l.

3. If u= F(t) when x = and u =f(x) when t=
,
then

/t

v. (6) Art. 50.
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4. If in Art. (51) F(t) is a periodic function of the time of period T it can

be expressed by a Fourier s series of the form

m = oo

1 OTT

F(t)
= - b + 5) \_

am sin ma* + bm cos ma*] &amp;gt;

where a = ,

m=l

or

where
/3m cos \m = am and pm sin Xm = 6m . v. Art. 31 Ex. 3.

Show that with this value of F(t) (10) Art 51 becomes

oo m= oo oo^ pm [
sin (mat+^/e

&quot; !
cos

m = 1 x

- cos (mat+ XJ e-^8
sin H

and that as t increases u approaches the value

n=oo _
1

7 I x^ xi/ma . x

Given that

^ sin = r^&quot;8injV2
;

e- 3* cos dx = e^^ cos b V2.

v. Riemanri) Lin. par. dif. gl. 54.

5. If we are dealing with a bar of small cross-section where the heat not

only flows along the bar but at the same time escapes at the surface of the

bar into air at the temperature zero we have to solve the differential

equation

D
t
u = a?Dx u b*u . v. Fourier, Heat 105.

Show that for this case

u= e~ (W + alal)t sin ax and u= er &amp;lt;** + alat) cos ax

are particular solutions, and that if u =f(x) when t=

= C
\7TJ

cf. (8) and (9) Art. 49.
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If u= when x = and u =/(#) when t=

u =

cf. (7) Art. 50.

If u= e~^ when t= and u= when x =
00 00

u = 4=[* (V (6vr +
&amp;lt;*

-
&amp;lt;r? (V

and if u= 1 when x = and w= when t= we have only to add

e~&quot;? to the second member of the last equation, since u= e~~z satisfies the

equation

If u= F(i) when x = and u= when = we can employ the

method of Art. 51.

+(* t- A)
= e-T +~

and u=

cf. (9) Art. 51,

u= =e-^-^ F(t-jj)i

cf. (10) Art. 51.

If F(t) is periodic and has the value taken in Ex. 4, show that the value

approached by u as t increases is

sn ma*-

where p= (6
2+ V/&

4 + m2 a2
) and gr

=
(

6 + Vfl
4 +iV
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Given

and

where

= -- e~

/

a 7T
^ sin -

&amp;lt;2

dx = - e~^ sin 2d

dx = e~ 2c cos

Angstrom s method of determining the conductivity of a metal is based on

the result just given (v.
Phil. Mag. Feb. 1863), and is described by Sir Wm.

Thomson (Encyc. Brit. Article &quot; Heat
&quot;)

as by far the best that has yet been

devised.

52. If u is a periodic function of the time when x = as in Art. 51 Ex. 4

and we are concerned with the limiting value approached by u as t increases

we can avoid evaluating a complicated definite integral if we take the following
course.

Since as we have seen in Art. 49 u = e^
t + ax

is a solution of

provided only that I3
= a2az we have

M= ^
as a solution.

Replacing /? by f& this becomes

= e*^

or tt= e*P

since = 1

(1)

and

Hence

are particular solutions of
(1).
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From these we get readily

x\f^i . / x Ima . \= pm e a
VT sin (mat

-
-\-g- + Xmj (4)

as a solution. (4) reduces to

u= pm sin (mat + A.m) when #=

andto M= pOTe-fTsinXfB
- 7 when #= 0.

If we add a term which satisfies (1) and which is equal to zero when x =

andto pme-^Ysin f A.TO
--

\~o~)
wnen *=

(
v. Art. 50) we shall

have a solution of (1) which is zero when t= and which is

pm sin (mat -\- \m) when a; = .

The term in question approaches zero as t increases [v. (7) Art. 50] and we
have at once the solution given in Art. 51 Ex. 4, as our required result.

EXAMPLE.

Show that u= ef&quot;

+ a*
is a solution of D

t
u=a^u bzu if (3

= a*az
b*,

and hence that

-^T=-)&amp;gt;
and u= e* aV/2 cos ( (ft -p ) ,

7 \ /
VS&amp;gt;

where

p= [V/8
2 + b* -f 62

]i and q =
are solutions. Hence

JE2L So* V3u= pm e~ ^- sin (pt *-.

\ &v
is a solution.

If /?
= ma this last result reduces to u= pOT sin (mat -f- Am) when x =

and by the reasoning of Art. 52 it must be the value u approaches as t increases

if we have the same conditions as in the last part of Art. 51 Ex. 5.

53. The whole problem of the flow of heat is treated by Sir William Thom
son

(v.
Math, and Phys. Papers, Vol. II), and other recent writers from a dif

ferent and decidedly interesting point of view, which we shall briefly sketch

in connection with the problem of Linear Flow.

Suppose we are dealing with a bar having a small cross-section and an adia-

thermanous surface, and take as our unit of heat the amount required to raise by
a unit the temperature of a unit of length of the bar. If at a point of the bar a
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quantity Q of heat is suddenly generated the point is called an instantaneous

heat source of strength Q.

If the heat instead o being suddenly generated is generated gradually and

at a rate that would give Q units of heat per unit of time the point is called a

permanent heat source of strength Q.

The temperature at any point of the bar at any time due to an instantaneous

source of strength Q at the point x= X is easily found by the aid of formula

(8)
Art. 49 as follows:

If a quantity of heat Q is suddenly generated along the portion of the bar

from x = X to a- = X -f AX, where AX is any arbitrary length, the tem

perature of that portion will be suddenly raised to
,
and we shall have by

(8)
Art. 49

A + AA

Qu=

as the temperature of any point of the bar at any time t thereafter.

If now we write u equal to the limiting value approached by the second

member of (1) as AA. is made to approach zero we get

(2)

as the solution for the case where we have an instantaneous source at the

point x= X .

It is to be observed that in (2) u= when t = and u = =
2a\l-jrt

when . x= X and t &amp;gt; .

If we have several sources we have only to add the temperatures due to the

separate sources.

Formula (8) Art. 49 may now be regarded as the solution for the case where

we start with an instantaneous heat source of strength /(X)c?X in every
element of length of the bar.

A source of strength Q is called a sink of strength Q-, and (6) Art. 50

may be regarded as the solution for the case where we have at the start an

instantaneous source of strength /(X)e?X in every element of the bar whose dis

tance to the right of the origin is X
,
and an instantaneous sink of strength

/(X)(/X in every element of the bar whose distance to the left of the origin is X.

If we have an instantaneous source at the origin (2)
reduces to

u = j=.erM (3)
2a\/7rt
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For a permanent source of constant strength Q at the origin (3) gives

t

Q /* a# i
u= 1= I e~4a}(t-T) (t r) a dr (4)

2a\7rJ
^

o

and for a permanent source of variable strength f(t)

M=_j_A ^_ _^
2a^rJ

In (4) and (5) ^ obviously reduces to zero when t= and x &amp;gt;
,
but its

value when x = is not easily determined. We can avoid the difficulty by

introducing the conception of a doublet.

54. If a source and a sink of equal strength Q are made to approach each

other while Q multiplied by their distance apart is kept equal to a constant P
the limiting state of things is said to be due to a doublet of strength P whose

axis is tangent to the line of approach and points from sink to source. A
doublet of strength P differs from a doublet of strength P only in that its

axis has the opposite direction.

Let us find the temperature due to an instantaneous doublet of strength P
placed at the origin. For a source of strength Q at x = ^ and an equal sink

at x= ?? we have

... ^ /., .,
&quot; \

4a2&amp;lt;
t?

4e2&amp;lt; ) j

or if 2vQ= P,
~P /! -I- -rZ * ...T f,x

e~~2a*t)

If
17

is made to approach zero

Px & ,^and u=-== e~ 55 (1)

is the solution for the temperature at any time and place due to an instantane

ous doublet of strength P placed at the origin. For a doublet at any other

point x = \ we have

P(x-
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For a permanent doublet of constant strength P placed at the origin we
have

t

6 ^^ (t
~

T)

~
* dr

5 (3)

and for a permanent doublet of variable strength f(t)

^ (t
~ r

&amp;gt;~ *-&amp;gt;w* , (4)

if sc&amp;gt;0, and

if x &amp;lt; 0, if we let (3
= ==

From (5) and (6) we see readily that u= when t= and that

u=
7j2

w^en x if we approach the origin from the right and that

f(t}
u = ^-j when x= if we approach the origin from the left.

If the point x = is kept at the constant temperature b and we are con

cerned only with positive values of x we can get from (5) the solution given in

Art. 50 Ex. 4 by supposing a permanent doublet of strength 2a?b placed at

the origin.

To solve the problem treated in Art. 51 we have only to suppose a permanent
doublet of strength 2a?F(t) placed at x = and from (5) we get at once

(10) Art. 51.

EXAMPLE.

Show that if D
t
u= a?Du tfu and an instantaneous source of strength

Q is placed at x = \

-*t

-**ZZT v. Art. 51, Ex. 5.

Show that if an instantaneous doublet of strength P is placed at the point

Px *
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If a permanent doublet of strength f(t) is placed at x =

whence w= when t = and #&amp;gt;0 or x &amp;lt; and w= *y-f when
2a2

a = 0.

Hence if we place at x= a permanent doublet of strength 2a*F(t) we

get the solution given in Art. 51 Ex. 5 for the case where u = F(t) when
x= and u = when = provided we are concerned only with positive

values of x .

If F(t)
= c this reduces to

c /*
w= -j= I e~ p2

7rJ

55. As another example of the use of Fourier s Integral we shall consider

the transmission of a disturbance along a stretched elastic string.

Suppose we have a stretched elastic string so long that we need not consider

what happens at its ends, that is so long that we may treat its length as

infinite. Let the string be initially distorted into some given form and then

released
;
to investigate its subsequent motion.

Let us take the position of equilibrium of the string as the axis of X and

any given point as origin.

We have, then, to solve the differential equation

V*y= a*D y (1)

[v. (vin) Art. 1] subject to the conditions

y=f(x) when *= (2)

D
t tj
= &quot; t = Q. (3)

As in Art. 8 we find

y= cos a(x at) and y= sin a(x at)

as particular solutions of (1).

From these we must build up a value that will reduce to

* *

f(x)
= - Cda Cf(\) cos a(\

-
x).d\ (4)
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when t= and will at the same time satisfy (3).

y= cos aA. cos a(x -f- at) + sin aA. sin a(x -\- at)

or y= cos a(A.
x at)

is a solution of
(1).

Hence y= - Cda f/(A) cos a(A x at).d\ (5)

-00

is also a solution of (1).

(5) reduces to y =f(x) when t= but it gives
oo QO

D
ty= - Cada Cf(\) sin a (A

-
x).d\

oo

when t= and consequently does not satisfy equation (3).

If in forming (5) we use cos a(x at) and sin a(x at) instead of

cos a(x -f- at) and sin a(x -f- at) we get

y= - Cda Cf(\) cos a
(A.

x + a).e& (6)
_oo

which is a solution of
(1), and reduces to y =f(x) when =

,
but it gives

00 00

D
ty ^

Cada Cf(\) sin a (X x).d\

-oo

when = and does not satisfy (3).

If, however, we take one-half the sum of the values of y in
(5) and (6) we

get

y= - ~ da f(\) cos a(A x at).d\= - r~ Cda C

00 00

+ - Cda Cf(\) cos a(\-x + at).d\] , (7)
o j;

a solution of (1) which satisfies both (2) and (3), and is, therefore, our required
solution.

This result can be very much simplified.

If we substitute z= x + at

V. &amp;lt;K

- Cda Cf(\) cos a (A x at).d\

-x

= - Cda Cf(\) cos a(X
-

*).r/A =/() =/(aj + ;

7T.7 /
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and in like manner we can show that

- Cda Cf(\) cos a(X x+ at).d\ =f(x at) .

_oo

Hence our solution becomes

y= | [/(* + at) +f(x -at)-]. (8)

This result is of great importance in the theory of elastic strings and it

shows that the initial disturbance splits into two equal waves which run along
the string, one to the right and the other to the left, with a uniform velocity a,

and that there is nothing like a periodic motion or vibration of any sort unless

the ends of the string produce some effect.

56. If the string is not initially distorted but starts from its position of

equilibrium with a given initial velocity impressed upon each point we have to

solve the equation

Vfy= a*l)iy (1)

subject to the conditions

y Q when =
(2)

D
ty= F(x) *= 0. (3)

We get by the process used in Art. 55

y=
1 Cda fy

27raJ J

but rsin a(X - x + at) ^ Tsin a(\
- x - at) da = .

r a
o

if re a^ &amp;lt; A &amp;lt; x + a^
5

and is equal to zero for all other values of X; since

= - if m&amp;lt;0

1

= if

v. Int. Cal. Art. 92
(3).

Hence y= FXd\ (4)

is our required solution.
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EXAMPLES.

1. If the string is initially distorted and starts with initial velocity so that

y=f(x) and D
ty= F(x) when =

y= \ [/I* + &amp;lt;) +A*~ *)] + Ta
x

2. If the initial disturbance is caused by a blow, as from the hammer in a

piano, which impresses upon all the points in a portion of the string of length
c an equal transverse velocity b show that the front of the wave which will be

seen to run to the left along the string will be a straight line having a slope

equal to an(^ a length equal to V4a2+ b* - Of course a wave having

a front of the same length with a slope equal to will be seen to run to
2iCL

the right along the string, and the effect of the two waves will be to lift the

be

string bodily and permanently to a distance above its original position.
Z(L

57. We shall now take up a few examples of the use of Fourier s Series.

In the problem of Art. 7 let the temperature of the base of the plate be a

given function of x, the other conditions remaining unchanged.

Since f(x)
=^ (am sin mx)

TO = 1

7T

where am = - f/(a) sin &amp;lt;*.da

m=oo v

we have u= ^ e~mv sin mx ( /(a) sin ma.da .
(1)

m=l

If the breadth of the plate is a instead of TT

a

&quot;?/ . rmrx / . mirX Tx ~i
sm

-^-J /(X) sin - rfX .

(2)
-&quot;

2
u = -

=l

58. If the temperature of the base is unity and the breadth of the plate is

TT the solution is, as we have seen in Art. 7,

I u= -
\
e~ v sin x + - e~^ sin 3x + -

e&quot;
51 sin 5# H---- | H)

7T L O 5 _|

This series can be summed without difficulty. We have the development

, N z zz
,

z* *

if the modulus of * is less than 1. Int. Cal. Art. 221 (4).
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Hence log (1 -) =- | -| -|
-
|
----

if mod. 2 &amp;lt; 1 .

and
f[log(l

+ *)-log(l-z)] = ;[+f

8

+ |V-- (2)

if mod. 2 &amp;lt; 1 .

But

log (! + )= log [1 + r(cos &amp;lt;f&amp;gt;
-f i sin

&amp;lt;)]

and

[Int. Cal. Art. 33 (2)]

and (2) becomes

1 [~1 1 -f- 2r cos

2 |_2
g
1 2r cos

1
[&quot;l^.i.-t-^cuag-rr- , ..,._-!

; u
r(cos &amp;lt; + * si11

&amp;lt;)

fs

(cos 3&amp;lt;j&amp;gt;
-f * sin

3&amp;lt;ft) , Q .

_i :.

_|_
- -

-j- . . .

^jj

From (3) we get two equations

1 1 -}- 2r cos
&amp;lt;^&amp;gt;
+ r2 r cos &amp;lt;

,

r8 cos 3&amp;lt;

,

r5 cos
5&amp;lt;ft

, ^ ^
I g

l-2rcos4&amp;gt; + r2= 1 3 5

1 . 2r sin d&amp;gt; r sin &amp;lt;i . r8 sin 3&amp;lt;f&amp;gt;

,

r5 sin
5&amp;lt;^&amp;gt; , ,K\

-tan&quot;
1

1 _ rr= ][ 3~~ 5

both valid for all values of
&amp;lt;#&amp;gt; provided r &amp;lt; 1 .

e~ y is less than 1 if y is positive.

Hence from (5)

r^sinx +
r* sin 3x +

e^ sin 5x
+ . . . = 1

tm_ 1

1 _ 1
2 sin a; _1 _, sin a;

and (1) may be written

2, .since
^= tan~ *

. ,

TT smh y
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If we replace r by e~ y and
&amp;lt;j&amp;gt; by x in

log [1 + r(cos &amp;lt;f&amp;gt;
+ i sin

&amp;lt;f&amp;gt;)]

it becomes log [1 + e~&quot; cos x-\-i e~ v sin
a;]

or log [1 + cos * -f i sin 2]

v. Int. Cal. Art. 35 (3) and (4)

a function of z as a whole; and

log [1 r(cos &amp;lt; -f i sin
&amp;lt;)]

becomes log (1 cos z i sin z) j

hence by Int. Cal. Arts. 212 and 213,

1 , 1 + 2e~ y cos a; -f e~ 2y 1 2e~ y sin a?
lQ

1 cosh y+ cos x
and

I
tan

_
4 cosh ?/ cos x 2 sinh y

are conjugate functions, and

1 . cosh ?/ 4- cos x
Ui= -

log
~^

(7)
TT cosh y cos x

is the solution for the problem where the isothermal lines are the lines of flow
of the present problem and the lines of flow are the isothermal lines of the

present problem.
For our problem, then, the isothermal lines are given by the equation

2 sin x
tan-1

.
= a

TT sinh y

and the lines of flow by

sin x air
or

. , = tan -:--
sinh y 2

1 coshjH-cos*
TT cosh y cos x

cosh y + cos x
or :L_! = e b . /9)

cosh y cos x ^

EXAMPLES.

=
, and u = 1 when y= , and u= when

a 5
a

a

x = and when x= a
,
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2. If u =
&amp;lt;j&amp;gt;(x)

when y= 0, u=f(y) when x = Q, and u = F(y)
when x= a

. ra-TrX ,

d\
2 ^ 22K m7 r xx N m&amp;lt;7r*

u= -
y^e&quot;

a sin I
^&amp;gt;(X)

sm
a ** a J a
m=l

. 1 , TTX rr 1 1 n
+ sm I

2a a J I . 7T , N TTOJ . 7T . N TTX
o cosh (X y) cos cosh (X + V) cos -1

a ^ a a ^ a

QO

+i-f/[ ^ it ,
. . TTX . TT /x . . T

cosh - (X y) + cos cosn
(A- H~ 2/) ~f cos

6Z- CL CL

v. Art. 48, Exs. 4, 5, and 6.

59. If three sides of a plane rectangular sheet of conducting material be

kept at potential zero and the value of the potential function at every point of

the fourth side be given; to find the value of this potential function at any

point of the sheet.

To formulate:

0. (1)

F=0 when z = 0. (2)

Y=0 x = a. (3)

F=0 y= b. (4)

V=f(x) y= 0. (5)

Working as in Art. 48 we get

. WTT xsmh- (J y)a v
. nnrx-r

-- sm-
. , rmrb a
smh-

a

as a value of Fwhich satisfies equations (1), (2), (3), and (4) if ra is an integer.

Therefore

sinh

is our required solution.

, x- /^ - y\ a

a-
v ^ x

. mTrx C . . m?rX
|

7
- sm- I /(X) sm

- dX
. .irnrb a /

v J
inh-
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EXAMPLES.

1. If f(x)
= 1 Eq. (6) Art. 59 reduces to

sinh - (b y) sinh (b y)4
I

, TTX
,
1 a ^

. 3jrx
V=-\--- sm--\--

- - sin-
77 L . , 7Tt a 3 . . 37rb a

smh smn-
a a

. sinh (b ?/)

,1 a v JJ
. 5-rrx . ~|

-f
-- -- sm--h
5 . , 5?r6 a

smh-
a

2. If F=0 when ce = 0, F=0 when a = a, F= when y = 0,

and V=F(x) when y= b, then

.

= sinh- -

^ X^ F a m7rx Cr,,^\ WMTAF= -V-r sm-
I ^(X) sin- d\ .

a ^-/ 1 n ra? a J ^ a
m=i smh- o

a

3. If ^JB = 1 the answer of Ex. 2 reduces to

. iry , TTV _

smh - smh smh
4

I
a TTX .1 a 3?rx .1 a OTTCC .F= -- sm --ho-51 sm--r -^-7 sm ------

.

TT L . , irb a 3 . , 3?r6 a 5 . , Strb a
smh smh- x smh-

a a a

4. If V=Q when cc= 0, F=0 when x= a, V=f(x) when y= 0,
and V=F(x) when y= b, then

. .. WITT X7 xm=oo sjnh- (b y)
__ 2 v F . mTTic / a ^ y/ r

N . ra-TrA. ,_F= -
&amp;gt;, sm- (
-

1 I /(A.) sm- d\
a ^ L a \ . . mirb J J v a. .

smh
a

. . rmrysmh
a C -n, N mirX , \~\

r I F(\} sm dX }
.

. . mirbj v a /J
smh o

a

5. If
/(cc)

= F(x) the answer of Ex. 4 reduces to

a

in^^
(/(A.)

sin^^ &amp;lt;fX
.

a J d _|

raTT

2^1 ~^~

.mirb
COSh -jr2a
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6. If f(x)
=

F(x) = 1 the answer of Ex. 5 reduces to

-
;
- sin-- -- ----_ sin

L
nn&amp;gt;,

wb a 3
i

&amp;lt;&quot;&amp;gt;^

cosh cosh
^a 2a

-p
2a

1. If V=f(x) when y = 0, V=F(x) when 7/
=

^, ^=^(y) when= 0, and V= x(y) when =
,
then

.sinh^

sinh o

a

^T^-^r
^^ Jw- o

sm
-j* ^ | *(A) sin^ &amp;lt;*A

-i&quot;~ sinh
6

sinh
,__o /* ,. N

. mir\ ,A~1
H-- I v(A) sm ; c?A jJ ^ y

5 /J
sinh 70

8. If
/(a;)

=
&amp;lt;(y)

= and F(x)
= x(y) = 1 the answer of Ex. 7 may be

reduced to

8mT +
2
-~

. , 3?r /a \ 4?r /a \
sinh-T-(- xj cosh-r (- eel _

V2 / . S7TV .1 ft V2 / . 47TV
o
--

o
- sm ~T^+ 7

-
*
- sm^ ----

o . Sjra 64 , 4?ra J J
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9. Find the temperature of the middle point of a thin square plate whose

faces are impervious to heat; 1st, when three edges are kept at the tem

perature and the fourth edge at the temperature 100; 2d, when two

opposite edges are kept at the temperature and the other two at the tem

perature 100; 3d, when two adjacent edges are kept at the temperature
and the other edges at the temperature 100. See examples 3, 6, and 8.

An*., (1) 25; (2) 50; (3) 50.

60. Let us pass on to the consideration of the flow of heat in one dimension.

Suppose that we have an infinite solid with two parallel plane faces whose
distance apart is c.

Take the origin in one face and the axis of X perpendicular to the faces.

Let the initial temperature be any given function of x and let the two faces be

kept at the constant temperature zero; to find the temperature at any point of

the slab at any time.

We have to solve the equation

(1)

subject to the conditions

u= Q when x =
(2)

u = Q &quot; x = c
(3)

u=f(x) *= 0.
(4)

In Art. 49 we have found

u= er a a2
&amp;lt; sin ax

and u

as particular solutions of (1).

e- a2 &amp;lt;*

2
* sin ax satisfies (2) whatever value is given to a. It satisfies (3)

if a =- provided m is an integer. Let us try to build a value of u out of
c

terms of the form Aer^T sin^^ which shall satisfy (4).C

We have

2 -r-\ r . rmrx C,*\ m7rX ,= -
c Zf I

smTj /(A) sm ~T~
dx
JJ

sm
m=l

mTTX /* _.
% x , m7T\ , ~|

J /(A) sm dl
J , (6)

reduces to (5) when t= and is our required solution.
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EXAMPLES.

1. If f(\)
= b, a constant, (6) Art. 60 reduces to

4ft r a2*2
* . 7TX ^ 1 9a27T2t . 37TX . 1 23ff2a ( . 5^0? ,

&quot;I

u= e ^~ sin 4- - e ^~~ sin --h - e ^T~ sin--p
TT L c 3 c 5 c J

2. An iron slab 10 cm. thick is placed between and in contact with two

other iron slabs each 10 cm. thick. The temperature of the middle slab is at

first 100 throughout, and of the outside slabs throughout. The outer faces

of the outside slabs are kept at the temperature 0. Required the temperature

of a point in the middle of the middle slab fifteen minutes after the slabs have

been placed in contact. Given a2= 0.185 in C.G-.S. units. Ans., 10.3.

3. Two iron slabs each 20 cm. thick one of which is at the temperature

and the other at the temperature 100 throughout, are placed together face to

face, and their outer faces are kept at the temperature 0. Find the tem

perature of a point in their common face and of points 10 cm. from the com

mon face fifteen minutes after the slabs have been put together.

Ans., 22.8; 15.l; 17.2.

4. One face of an iron slab 40 cm. thick is kept at the temperature and

the other face at the temperature 100 until the permanent state of tem

peratures is set up. Each face is then kept at the temperature 0. Required

the temperature of a point in the middle of the slab, and of points 10 cm. from

the faces fifteen minutes after the cooling has begun.

Ans., 22.8; 15.6; 16.7.

61. If the faces of the slab treated in Art. 60 instead of being kept at the

temperature zero are rendered impervious to heat, the solution of the problem

is easy.

In this case we have to solve the equation

subject to the conditions

Dxu = when x =
Dxu = &quot; x = c

u=f(x)
&quot; * =

We have only to use the particular solution

u-=e~ (fa?t cos ax

as we used u= e-&quot;**
2
* sin ax

in Art. 60. We get
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EXAMPLES.

1. Solve example 2 Art. 60 supposing that the outer surfaces are blanketed

after the slabs are placed together so that heat can neither enter nor escape.

Find in addition the temperature of the outer surfaces fifteen minutes after

the slabs are placed in contact. Ans., 33.3; 33.3.

2. Solve example 3 Art. 60 on the hypothesis just stated, getting in addition

the temperatures of points on the outer surfaces.

Ans., 50; 33.9; 66.l; 27.2; 72.8.

3. Solve example 4 Art. 60 supposing that heat neither enters nor escapes

at the outer surfaces after the permanent state of temperatures has been set

up. Find also the temperatures of points in the outer surfaces.

Ans., 50; 39.7; 60.3; 35.5; 64.5.

4. Show that if u= when x = Q, Dxu= when x = c, and u=f(x)
when t=

,

sn A sn

Suggestion : Assume u= when x = 2c and f(2c x) =f(x), and see

(6) Art. 60.

62. If the temperature of the right-hand face of the slab considered in Art.

60 is a constant y instead of zero we have only to add to the second member
of (6) Art. 60 a term u^ which shall satisfy the conditions

(1)

w1==0 when x =
(2)

Ml = t=
(3)

1
=

y X= C.
(4)

ut
= 2-

obviously satisfies (1), (2), and (4) ;
to make it satisfy (3; as well

we must add a term u2 which shall be equal to zero when x= and when
ViC

a = c and to *- when = 0, while always satisfying (1). It is given
c

immediately by (6) Art. 60 and is

sin
mTTX /\ . miT\ ^ \ ,.

-j-J
X sm

d\J
. (5)

c

/.
mir\ c2

, c2

\ sin- d\=-- cos mir= ( l)
m + l

&amp;gt;

c mir ^ mir
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, 2y
m
^T/( l)

m m*aWt . m7TX\ /A x

and u2
= - V

(
i- e

--
sin- ) (6)

Taj . 2-+ -
\_C 7T

. &amp;lt;r- w .

Hence % = - - - e ^~ sm
C

If the left-hand face of the slab considered in Art. 60 is to be kept at a

constant temperature ft and the right-hand face at the temperature zero we

can get the term us which must be added to the second member of (6) Art. 60

by replacing y by ft and x by c x in
(7). We then have

_ re X 2x-\/l mairt .

ft\
---

&amp;gt;J
~ e ^~ s

L o 7r^\m
sm

c

EXAMPLES.

1. Show that if. ^= /3 when x= Q, u= y when cc = c, and u=f(x)
when ^=

sm irf(A) fllsm
mTTX -

-7-J c/w

2. Show that if ^^ = ft when a: =
,
u = when ,t = 0, and Dx u

when c= c

4/ a*ir*t . 7TX . 1 ga^f . STTOJ 1 25a7Tt . &7TX~ ^ Sm + 6~^&quot; sm + e
&quot; - Sin ~

63. If the temperature of the right-hand face of the slab just considered is

a function of the time instead of a constant and the temperature of the left-

hand face is zero the problem can be solved by a method nearly identical with

that of Art. 51.
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Let
&amp;lt;J&amp;gt;(x,i)

be a function of x and t which shall be zero if t is less than zero

and shall be equal to

O
W= *

/ -\\m \

H sA * e~
ma

cz sin I

c TT *-l \ m c /
m=l

[v. (7) Art. 62] if t is equal to or greater than zero. So that

&amp;lt;f&amp;gt;(x,t)

= if t &amp;lt;

$(x.t)
= 1 &quot; t= and x= c

4&amp;gt;(x,t)

= l &quot; x = c

4&amp;gt;(x,t)
=0 &quot; x = Q.

Precisely as in Art. 51 we get

* =

_ limit ^A |~
.

[&amp;lt;f&amp;gt;(x,t kr) &amp;lt;f&amp;gt;(x,t (k -f- I)T)]T
|

/-i\

as the required solution of our problem, n being as in Art. 51 the largest

integer in - where t is any given value of the time.

On our hypothesis the last term of
(1), that is, F(nr)&amp;lt;l&amp;gt;[x,t (n -f- l)r]

= 0;

the next to the last term
F(nT)&amp;lt;^(x^t ^r) has for its limiting value

JH=1

while as in Art. 51 the limiting value of the rest of the sum is

t

CF(\)DI&amp;lt;J&amp;gt;(X,
t

o

m= oo

~ &quot; vv
sin

Hence

m=l
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(2)

If we substitute /?
=

^ (t X) we get

EXAMPLES.

1. If the temperature of the left-hand face is a function of and the tem

perature of the right-hand face is zero and the initial temperature is zero

u= - - sn /
2. If the temperature of the left-hand face is a function of *, the initial

temperature is zero, and the right-hand face is impervious to heat

3. If in Arts. 60-63 we are dealing with a bar of small cross-section and of

length c and heat is radiating from the surface of the bar into air at the tem

perature zero so that D
t
u= a*D*u b*u, show that: (a) the second mem

bers of (6) Art. 60 and (1) Art. 61 must be multiplied by e~m
; (b) equation

(7) Art. 62 becomes

sinh
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(c) equation (2) Art. 63 becomes

.

Bin

64. The problem of the motion of a finite stretched elastic string of length
I fastened at the ends and distorted at first into some given curve y =f(x) ,

and then allowed to swing, has been treated and partially solved in Art. 8.

The complete solution is easily seen to be

cos
ratC*,*\ ^TrA. ^

J f(\) sm -j-
d\ .

(1)

The second member of (1) is a periodic function of I having the period
21

. The motion, then, unlike that in the case of an infinite string (Art. 55) is
^

21
a true vibration, a periodic motion. The period is the time it takes a dis-

Ob

turbance to travel twice the length of the string (v.
Art. 55).

A careful examination of (1) will show that the actual motion is a good deal

like that in the case considered in Art. 55. The original disturbance breaks

up into two waves one of which runs to the right until it reaches the end of

the string and is then reflected, and runs back to the left or the under side of

the string, while the other wave runs to the left and is reflected at the left-

hand end of the string and runs back to the right under the string and is

again reflected, runs back to the left over the string and so on indefinitely.

If the curve into which the string is distorted at the start is of the form

T . W17TX ... , .

y= o sin the solution is

, nnrx rmrat
y bsm

j-
cos -

.

(2)

No matter what value t may have the curve is always of the form

. . TtlTTX

y=A&w.j-\
that is, for different values of t we have a set of sine curves differing only in

the amplitude and not at all in the period of the curve. In this case either

the whole string if m = 1
,

or each mth of the string if ra is not equal to

one, rises and falls, and there is no apparent onward motion. When this is

the case we are said to have a steady vibration.
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If m = 1 we get steady motion of the string as a whole and if the vibration

is rapid enough to give a musical note the note is said to be the pure funda

mental note of the string. If m= 2 the vibration is twice as rapid as when
ra = 1

,
the middle point of the string does not move and is called a node, the

two halves of the string are in opposite phases of vibration at any instant, and

the note given is an octave higher than the fundamental note and is called its

pure first harmonic.

If m= 3 the vibration is three times as rapid as in the first case, there are

I 21
two nodes x= - and x =

,
and the note is the pure second harmonic of

o o

the fundamental note.

For any value of m the vibration is m times as rapid as when m = 1, there

are m 1 nodes at the points x = , x , x - I, and we get themm m
m 1st harmonic of the fundamental note.

It is clear from (1) that no matter what the original form of the string the

resulting vibration can be regarded as a combination of steady vibrations each

of which alone would give the fundamental note of the string or one of its

harmonics, and that the complex note resulting is really a concord of the fun

damental note and some of its harmonics.

A finely trained ear can often recognize in a complex note the fundamental

note of the string and some of its harmonics and is capable of analyzing a

complex note into its component pure notes precisely as Fourier s Theorem

enables us to analyze the complex function representing the initial form of the

string into the simpler sine-functions which must be combined to form it.

EXAMPLES.

1. Show that if a point whose distance from the end of a harp string is

-th the length of the string is drawn aside by the player s finger to a distance

b from its position of equilibrium and then released, the form of the vibrating

string at any instant is given by the equation

2bn2

(n

1 ^TT . mjrx m7rat\
- sm- sin ; COS-; I

&amp;gt;* n l l

Show from this that all the harmonics of the fundamental note of the

string which correspond to forms of vibration having nodes at the point

drawn aside by the finger will be wanting in the complex note actually

sounded.
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2. If a stretched string starts from its position of equilibrium, each of its

points having a given initial velocity, so that we have

y= when t =

the solution of the problem of its vibration is easy and gives

m=oo l

2 ^\ / 1 . mTTX . mirat C -^ m7r\
2/
= Y(- sm -sin I m) sin (

air *-4 \m I I J ^
I

m=l

3. Write down the solution for the case where the string is initially dis

torted and each point has a given initial velocity.

65. If we do not neglect the resistance of the air in the problem of the

vibration of a stretched string the differential equation is rather more compli
cated and the solution is not so easily obtained. The equation is given as (ix)
Art. 1.

Let us solve the problem for the case where there is no initial velocity.

Here we have D?y -f 2kDty= a2Dy . (1)

?/
= when x = (2)

y= x = l
(3)

y=f(x) t= Q
(4)

D
ty= &quot;

t= 0.
(5)

We get particular solutions of (1) in the usual way. Assume y= e* + P &amp;lt;

and substitute in
(1). We have

as the only necessary relation between /? and a. This gives

/3
= -k^a*a2

+k*._
Hence y= e ax- * * v la + *2

(6)

is a solution of (1) no matter what the value of a.

To throw it into Trigonometric form replace a by ai, and since in actual

problems k, which is proportional to the resistance, is very small, take 1

out as a factor of the radical. We have
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Since a may be positive or negative we can get

y= e
~ kt sin (ax t YaV A;

2
)

and y= er kt cos (ax t 0*2a 2
A;
2
)

as solutions of (1), or by combining these

y= e~ kt sin ax cos t V^a
2a2 k*

(7)

y= e~ kt sin ax sin t VaV k* (8)

y= e~ kt cos ax cos V 2a2 k* (9)

(7) and (8) satisfy (1)
and (2) for all values of a. They satisfy (3) if

a = . Let us see if out of them we cannot build up a value that will satisfy

(4) and (5) as well.

m=l

2 &quot;^T/

y= -
e-*&amp;lt; y (

sin ^- cos *A/^ ^
I /(*) sin

&quot;^
^

) (I2)
fc \ ft t ^7 f

m=l

reduces to (11) when t= and therefore satisfies
(4).

i

^ 2
mirx . 72 -/xN .#=- B

- H - sm - K A) sm

:^/. mTrx-
s 2) (

sm
-7-

o

i

cos t \l , k*. I /(A) sin
*x

When ^= the first line of the second member of (13) vanishes but the

second line reduces to

We must, then, introduce into (12) an additional term which shall equal zero

when t= and whose derivative with respect to t shall cancel the term above

when t= 0.
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This is easily seen to be

Hence our complete solution is

-&2

*
i&quot;

k
+

,

sin t V^TT^ ~ *&quot;)
sin ^T f/W sin ^7^ ^1 (

14)
/m2

7T
2a2 ^6 J t J i

Here the fact that e~ kt
,
which decreases rapidly as t increases, is a factor of

the whole second member shows that the amplitude of the vibration rapidly

decreases.

Comparing this solution with that given in Art. 64 for the case where there

is no resistance we see that the period of any given term

,

A sin cos t v ^-- ,

is greater than that of the corresponding term A1 sin cos - in Art. 64.
i I

In other words the effect of the resistance of the air is to flatten some

what each component part of the note given by the string. More than this

since the periods of the different terms of (14) are no longer exact submultiples
of the period of the first term, the component notes are no longer in perfect

harmony with the fundamental note of the string, and the ideal perfect har

mony between the fundamental note and its harmonics is not quite realized in

any actual case.

When k is very small, as in the case of a fine string, the departure from

perfect harmony is very slight; but in the case of a coarse string or worse still

of an elastic ribbon, where the resistance of the air is considerable, the

unmusical character of the sound is very noticeable.

EXAMPLES.

1. Solve Ex. 1 Art. 64 allowing for the resistance of the air.

2. Solve Ex. 2 Art. 64 allowing for the resistance of the air;

2
., v-* / 1 mrrx . mWa? . / mTrX-

. p
tf
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3. Find a particular solution of (1) Art. 65 on the assumption that it is of

the form yT.X, where T is a function of t alone and X a function of x

alone.

66. We pass on now to a couple of problems that require the modification

and extension of Fourier s Theorem, the cooliny of a sphere in air, and the

vibration of a stretched rectangular membrane, but as an introduction to the

former we shall first consider the following very simple problem; to find the

temperature of any point of a sphere whose initial temperature is any given

function of r the distance of the point from the centre, and whose surface is

kept at the constant temperature b.

Here we are to solve

D
t (ru)

=
a*V*(ru), (1)

see [v] Art. 1, subject to the conditions

u=f(r) when t = Q (2)

u = b &quot; r= o (3)

if c is the radius.

Let v = ru, then our equations become

DtV
= a*D*v (4)

v= rf(r)
when =

(5)

v= bc &quot; r= o (6)

V = Q r= 0. (7)

Our problem is now precisely that of Art. 62 and we have as our solution

ru / m*a***. . Wrr / .= -
2,

/ e ^~&amp;lt; sin-I X/(X)

m=l

. ^sm d\

r- 9 //
-j\ OT 228 m7rr\~\

-f b\ r+ y\(
^- e-^ sin

) (
8)

1

TT ^\ m c /J
m= 1

EXAMPLES.

1. If f(r)
= b (8)

Art. 66 reduces to u b and there is no change of

temperature.

2. If the initial temperature is constant and equal to /3

TTT ^ L c 2 c

1 9a*r . STTT- -em-
J
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3. An iron sphere 40 cm. in diameter is heated to the temperature 10CP

centigrade throughout; its surface is then kept at the constant temperature 0.

Find the temperature of a point 10 cm. from the centre, and find the tem

perature of the centre, 15 minutes after cooling has begun. Given a2= 0.185

in C.G.S. units. Ans., 2.l; 3.3.

67. If instead of having the temperature of the surface of the sphere

constant, the sphere is placed in air which is kept at the constant tem

perature zero, the problem is much more complicated. For in this case the

surface temperature can no longer be simply expressed but is given by a new

differential equation
Dr u-\-hu = Q when r= c, (1)

where h is an experimental constant depending upon what is called the sur

face conductivity of the sphere.

Our equations, then, are

) (2)

u=f(r) when =
(3)

Dru-irku= when r c. (4)

As in Art. 66 let v = ru
;
then we have

D
t
v = a*D*v (5)

v = rf(r) when t= (6)

v = &quot; r= (7)

-v= Q when r= c. (8)

v= e~ 2a* cos ar and v= e~ a2&amp;lt;x2 sin ar have already been found as par

ticular solutions of (5) (see Art. 60).

v= e-M sinar (9)

satisfies (7) for all values of a.

Substitute this value of v in (8) and we have

ac cos ac + (Jic 1) sin ac= . (10)

If ak is a value of a which is a root of the transcendental equation (10)

v= e~ aia
k

f sin ak r (11)

will satisfy (5), (7), and (8).

It remains to see whether out of terms of the form given in (11) we can

build up a value of v which will satisfy (6).
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When = the second member of (11) reduces to smak r. If then we
can express rf(r) as a sum of terms of the form bk sin ak r where ak is a root

of (10)

v= .bke-
2&amp;lt;x

fc sin ak r (12)

will satisfy all of the equations (5), (6), (7), and (8), and will be the required
solution.

Here, then, we have a new problem analogous to that of developing in a

Fourier s Series, but rather more complicated, namely, to develop any function

of x in a series of the form ^?am sin amx where am is a root of the equation

(10); or if we call ac= &amp;lt; and hc l=p, where am = ,
&amp;lt;

OT being a root

of the equation
&amp;lt; cos

&amp;lt;f&amp;gt;
+p sin

&amp;lt;f&amp;gt;

=
(13)

or more simply of

&amp;lt;fr+^tan$
= 0; (14)

remembering that the series and the function must be equal for all values of x

between zero and c.

If
&amp;lt;f&amp;gt;m is a root of (14) &amp;lt;f&amp;gt;m is also a root.

Since sin - x = sin f x ) the terms of the required development

which correspond to negative roots may be combined with those corresponding
to positive roots, and therefore we need consider only positive roots.

&amp;lt;/&amp;gt;

= is a root of (14) but as sin 0=0 there will be no corresponding
term in the development.

If we construct the curve

y= -|* (15)

and the curve

y= tan x (16)

the abscissas of their points of intersection are values of x which satisfy

|-tanaj= 0, that is, are roots of equation (14). It is easy to see that

there will always be an infinite number of real positive roots, one for each of

the branches of the periodic curve y= tan x which lie to the right of the

origin. The numerical values of these roots can be obtained by an easy com

putation. The construction suggested above shows that as m increases
&amp;lt;f&amp;gt;m

will rapidly approach the value (2m 1)
- if p is positive or if p is negative

and numerically less than unity, and (2m -f- 1) if p is negative and numer

ically greater than unity.
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There exist, then, an infinite number of positive real roots of &amp;lt; -{-p tan &amp;lt;f&amp;gt;

=
and consequently of

ac cos ac -J- (lie 1) sin ac = .

68. The development called for in the last article can be obtained very

easily from a simpler one which we shall now consider, namely, to develop f(x)
into a series of the form

f(x) = ax sin fax + a z sin fax + a3 sin
&amp;lt;f&amp;gt;

3x -\
----

(1)

where ^u &amp;lt; 2 , &amp;lt;f&amp;gt;
3

&quot; are roots of the equation

(ft
cos &amp;lt; -\-p sin &amp;lt;

=
, (2)

the development to hold good for all values of x between x = and x= 1 .

Let us proceed as in Arts. 24 and 27. Call = Ax and form n equa-
ft-f-1

tions by substituting for x in turn in the equation

f(x) = ttl sin &amp;lt;foaj+ 2 sin &amp;lt; 2 x -f 8 sin &amp;lt; 3x H-----1- an sin
&amp;lt;#)ra

ic
(3)

the values Aa, 2Ax, 3Ax, 7iAx
;

this being equivalent to making the values
of the sum and the function coincide for the n values of x substituted.

To determine any coefficient am multiply the first equation by Ax. sin
(&amp;lt;
mAx),

the second by Ax. sin
(2&amp;lt;^&amp;gt;?raAx), the third by Ax. sin

(3&amp;lt; mAx), and so on, the
nth equation by Ax. sin

0&amp;lt; mAx) ;
add the equations and compute the limit

ing values of the terms of the resulting equation as n is indefinitely increased.
This as in Art. 24 is seen to be equivalent to multiplying (3) by sin ^m
and integrating between the limits x = and x = 1.

The first member of the resulting equation is

Cf(x) si

1

/
sin

o

The coefficient of ak is

i

sin
&amp;lt;j.xsin &amp;lt;f&amp;gt;m x.dx ,

and of am is

/
x.e?x .

J*sin

2
&amp;lt;f&amp;gt;T
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l i

Tsin ^fX sin
&amp;lt;f&amp;gt;mx.dx = -

i [cos (fa &amp;lt;j&amp;gt;m)x cos (fa -\- Q^x^dx
if ^

^ F 8*11 (fa ^m) sin (fa -f-
&amp;lt;f&amp;gt;

fa cos fa sin &amp;lt; m &amp;lt;f&amp;gt;m sin
&amp;lt;fo.

cos &amp;lt; m

4&amp;gt;k fan

But
^&amp;gt;fc

cos fa -\-p sin ^ =
and

&amp;lt;f&amp;gt;m cos
&amp;lt;^&amp;gt;m +p sin &amp;lt; m = by (2).

Hence the numerator of the second member of (4) is zero, and the coefficient

of ak vanishes if k is not equal to m.

Jsi
sn x.x= -+m- sn * cos

&amp;lt;^m = -

Therefore am= . ^ ( f(x) sin
&amp;lt;f&amp;gt;mx.dx . (6)

sm2&amp;lt;^&amp;gt;mj^ v /

1 ^-^c

The coefficient of the integral in (6) can be transformed as follows so as not

to involve trigonometric functions.

&amp;lt;f&amp;gt;m cos
&amp;lt;l&amp;gt;m +psm&amp;lt;l&amp;gt;m = 0, by (2)

&amp;lt;f&amp;gt;m COS 2
(j)m -f&quot; o ^^ ^^m ==

&amp;gt;

sin
2&amp;lt;^&amp;gt;m _ _ cos 2

&amp;lt;frm
^ -^

2&amp;lt;^&amp;gt;m p

Hence by (7) and (8)

_

Therefore our required development is

&quot;&quot;

sn xa sin
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From (10) it easily follows that for values of x between and c

f(x)
=

a-L sin a\x + az sin azx -f- ag sin azx -f- (11 j

and am is a root of the equation

ac cos ac-\-p sin ac= .

(13)

It is to be observed that if p is infinite (13) reduces to sinac= 0, am

becomes- and (11) and (12) give our regulation Fourier sine series (V. Art.
c ^

31), and therefore the ordinary Fourier development in sine series is merely a

special case of the problem just solved.

Moreover since the Fourier method of determining the coefficients of such a
series requires that

c

( sin amx sin an x.dx = ,

o

that is that rin(a,-a&amp;gt;_ sin^ + ajc = Q
am ~ an am an

ao
or reduping, that

sm amc sin anc

or that am and an should be roots of the equation

ac cos ac _
sin ac

where p is some constant, it follows that we have obtained in (11) the most
general sine development that can be obtained by Fourier s method.

EXAMPLES.

1. Show that the solution of the problem of Art. 67 is

and a is a root of

ac cos ac + (Ac 1) sin ac =
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2. If the initial temperature of the sphere is constant and equal to ft

a 2 c
2 4- (he I)

2 sin am c= 2 h- .

--- -- L.

3. If the temperature of the air is a constant y instead of zero the surface

equation of condition is

Dru-{-h(u y)
= when r= c .

The substitution of ul
= u y, however, brings the problem under Ex. 1

and we get

r(u y)
= bm e-

aZa^ sin am r

7M=1

where bm= - .

&quot;

fA[/(A) - y] sin am
c an

2
c
2 + /^ ^ 1)J1)

4. An iron sphere 40 cm. in diameter is heated to the temperature 100

centigrade throughout; it is then allowed to cool in air which is kept at the

constant temperature 0. Find the temperature at the centre; at a point 10

cm. from the centre; and at the surface; 15 minutes after cooling has begun.

Given a2= 0.185 and h= ^- in C.G.S. units,
(v.

Ex. 3, Art. 66.)
oOO

Ans., 97.67
;
97.36

;
96.46.

5. Show that if in the slab considered in Art. 60 one face is exposed to air

at the temperature zero, so that we have D
t
u = a2

J)u, u = when x= 0,

u=f(x) when t= Q, and Dxu + hu Q when x = c, then

sn amx

= 2__ /X sin

am being a root of ac cos ac -\- he sin ac= .
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6. If in the problem of Art. 57 heat escapes from one side of the plate into

air at the temperature zero so that we have D%u + D* u =
,

u = when
x= 0, uf(x) when y= 0, and Dxu-\-hu = Q when x = a, then

sn

am being a root of aa cos aa -f- ^a sin aa = .

7. If in the problem of Art. 59 there is leakage at one side of the sheet so

that we have D*V+ D*V=Q, F=0 when a? = 0, F=0 when y = b,

V=f(x) when y= 0, and DxV+hV=0 when x a, then

MTl Slnh amb

where am has the value given in Ex. 6.

69. If we have an infinite solid with one plane face which is exposed to air

at the temperatures U= F(t) and heat can flow only at right angles to this

face, we can solve the problem readily for the case where the initial tem

peratures are zero. We have

subject to the conditions

u = when t =
and Dxu -\- h(U u)

= when x = .

Let v =u-Dxu. (1)

Then v will satisfy the equation

and we shall also have v = U when x= .

Since U=F(t) v = Ce~^Flt ~~i)d/3 (2)

X

by Art. 51 (10).

Dxu hu hv by (1).

Hence ue~ hx= h \&amp;lt;r
** vdx -f C 5

v. Int. Cal. 4, page 314.
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Determining C by the fact that ue~ hx= when x oo we have
00

u= he hx Ce~ hx vdx .

(3)
X

Substituting the value of v from (2) we have

as our required solution.

For an extension of this method to the flow of heat in two and three dimen

sions and for the interpretation of the results by the aid of the theory of

linages, see E. W. Hobson, Proc. Lond. Math. Soc., Vol. XIX.

EXAMPLES.

1. If the temperature of the air is a periodic function of the time, say

pm sin (mat + Xm) and we care only for the limiting value of u as t increases,

show that this value is

(

1 \in,a\
A+ a\T/

ma

ma / x ma

v. Art. 52 and Art. 51 Ex. 4.

C e
ax

(a sin bx b cos bx)
Note that I e

ax sm bx.dx =-*-
, 72
--

J a~-\-b
2

.&amp;lt;

C e&quot;* (a cos bx + b sin bx)and I e
ax cos bx.dx = *-

2
--*

J a2+ 6
2

v. Int. Cal. Table of Int. (235) and (236).

2. If D*V+D*V=Q, V=0 when y= and ^F-f h{F(y) V] =
v^hen x = show that

v. Art. 47 Ex. 1.

70. The solution for an instantaneous heat source of strength Q at the

point x.= \ if heat escapes at the origin into air at the temperature zero, so

that Dxu hu= when x =
,

can be obtained by the aid of Art. 53.
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Let u= u l -{- uz where u is the temperature that would be due to the given

source if we had no boundary at the origin, so that

M! = ^7= e-^f5
. [Art. 53 (2)1

J)xu hu = Dx Ui hui -j- DXU* ^2 == when x= .

Therefore Dxu* hu2
= (Dx u^ hu^) (1)

when x = .

when x= 0.

This is easily seen to be the value to which

_BV a

reduces when x =
,
and this last expression is

(A +

and therefore satisfies the equation

t x &amp;gt; \ )

Q U + X)2

1=- e
4a2&amp;lt; is the temperature due to a source at x= A. .

If, then, we determine ?&amp;lt;2 from the condition that

Q A + sc \ (A + a

D,u, -hu,= - -=
(-^-

-
h)
e-^r

taking care not to introduce any arbitrary constant or arbitrary function of t

in our integration, u2 will satisfy equation (2) and condition
(1).

Integrating (3) [v. Int. Cal. 4, page 314] and determining the constants of

integration suitably we get

Therefore the solution of our problem is

00

I /&quot;* f\ -4- a?^2 ~1

(5)
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If we replace Q by f(X)d\ and integrate from to oo we get as the solution

for the case where uf(x) when = and cc&amp;gt;0, and Dxu hu= Q

when x =

/(\\
I I ,/ i*vy*v I ^

&amp;lt;U*l |
^ WZ&1 **iv\j v 4OZ w/ai/ I . I O )

U\I Trt*

For an interpretation of this result by the theory of Images and the

extension of the method to the conduction of heat in n dimensions see G-. H.

Bryan, Proc. Lond. Math. Soc., Vol. XXII.

EXAMPLE.

Show that if uf(x) when = and Dxu + h[F(t) u] = when
x= we must take u equal to the sum of the second members of (6) Art. 70

and of (4) Art. 69.

71. As another problem requiring a slight extension of Fourier s Theorem

let us consider the vibration of a rectangular stretched elastic membrane

fastened at the edges, that is of a rectangular drumhead.

If two of the sides are taken as axes and the plane of equilibrium of the

membrane as the plane of XY the equation for the motion of the membrane is

see [x] Art. 1.

Let the membrane be distorted at the start into some given form z =/(, y)

and then allowed to swing. Our equations of conditions are then

z = when x = Q (2)

* = x = a (3)

*=/(*, 0&quot;
*= (

6
&amp;gt;

We can get a particular solution of (1) by our usual device. Assume

and substitute in (1) . We get y
2= c

2

(a
2+ /3

2

) as the only relation that

need hold between a, ft,
and y, in order that = e aa! + ft + * may be a

solution. This gives

Therefore *= e ** + *

is a solution of (1) no matter what values are given to a and ft.
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Keplace a and ft by ai and fti and we have

(8)

as a solution, and from this we get

z= sin
(ace + fty ct

&amp;lt;Ja

2+ ft
2
)

and z= cos (ax -}-ftyct Va2+ ft
2

)

as particular solutions of
(1), a and ft being unrestricted.

(8) and (9) we can get solutions of the following forms

z= sin ace sin fty sin ct Va2+ ft
2

z= sin ace sin fty cos ct \ja
2
-\- ft

2

z= sin ace cos fty sin ct Va2
-f ft

2

z= sin ace cos fty cos ct Va2+ ft
2

cos ace sin fly sin ct Vaz+ ft
2

\

z= cos ace sin fty cos

z= cos ace cos fty sin

3= cos ace cos fty cos

each of which will satisfy equation (1). The second of these will satisfy also

(2), (4) and (7) whatever values be taken for a and
ft. It will satisfy (3) and

(5) if a and ft are equal and respectively.

If, then, we can so combine terms of the form

(10)

.

sm sin
a b

cos cirt

as to satisfy (6) our problem will be completely solved.

This can be done if we can express f(x, y) as a sum of terms of the form
mirx niryA sin sin , the sum and the function being equal when x lies

between and a and y between and b.

f(x, y) can be expressed in terms of sin by Fourier s Theorem if we

regard y as constant. We have

(11)

m=l
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where = - A sin

/(A, y) in (12) is a function of y and may be developed by Fourier s Theorem.

n= oo

We have
/(A, y) = 4. sin^ (13)

n = l

6

=
fJ/(A,

/*) sin^ rf/* .

(14)

Substituting for /(A, y) in (12) the value just obtained we have

. ?w,7rA. . WTrtt _ \ n
A*) sm -^-

sin -f dp)
sin -

where

n= oo a 6

n = 1

and

sn X, sn sn

. m,7rx . rnry ra2
, n\ ,* r ^

,n
sm

-^-
sm -^ cos CTT^

^/
~ + -\ , (16)Hence

where Am n
= I d\ ( f(\, a) sin sin dii . (17)

a!)J J*\*&quot;-/ a b
r v

is our required solution.

EXAMPLES.

1. Show that if the membrane starts from its pc-sition of equilibrium but

with a given initial velocity impressed upon each point so that z = when
t = and D

t
z = F(x, y) when t = the solution is

mirx . mry .

sm- sm-
*

a 6

4 /^_ Cn,^
I c?A I F(\,

i ^ _ n,^ \ .

where ^4 = I c?A I F\ sin- sm
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2. If there is both initial distortion and initial velocity

4 -^-\ x-v fttTTX . mrv r~. \m
l

. n2
. m2

. n
z = &amp;gt;

&amp;gt;,
sin Bin r* \Amn cos CTrt\l = +75- + .Bmn smc7rt\ +77

ao ^* *^ a b * a o \ a b
m=l n=l

a 6

/** /^* 7^t7T\.

where ^t
TO&amp;gt;n

=
f
d\ I / (A., p) sin sin

a b

1

vs
sn sn

3. Obtain a particular solution of (1) Art. 71 by assuming z = T.X. Y.

where T is a function of t alone, X of # alone, and Y of ?/ alone.

72. A number of interesting conclusions can be drawn from the results of

Art. 71 and Exs. 1 and 2.

(a) No one of the three values of z is in general a periodic function of t,

and consequently a vibrating rectangular membrane will not in general give a

musical note.

(b) A stretched rectangular membrane can be made to give a musical note

by starting the vibration properly. For if the initial circumstances are sucli

that the solution reduces to a single term, as will be the case if the initial dis

tortion in the problem of Art. 71 be such that f(x, y)
= AmM sin sin -,

Ob O

or the initial velocity in Ex. 1 be such that F(x, y)
= Bm ^n

sin sin ^^ ,

or the initial distortion and initial velocity in Ex. 2 be the values just given,
then the vibration will be periodic and will have the period

In* *
V a*

^
b2

Since T is a function of m and n and m and n are any whole numbers, the

same membrane is capable of giving a great variety of musical notes of differ

ent pitches. If m and n are both unity we get the lowest note the membrane
can give, which is called its fundamental note. Its period

(2)

If 7ft and n are both equal to k we get

2^
(3)
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therefore the membrane can be made to give any harmonic of its fundamental

note.

More than this, since as we have seen

2T =^

\m ,
n1

\* + P

is the period of any note the membrane can give, and since if m and n are

replaced by mk and nk we get

2T-*
mk, nk

ck
/ n
^ a2 ^

ft*

the membrane can sound all the harmonics of any note which it can give.

(c)
In the case considered above, where the solution reduces to the single

term

. imrx . mry |~ m2
. K? . m2 -

n?~]
Z = Sm

~7~
8m

6 L &quot;

C S ^ +
ft
2 + m n Sm ^U2 +

ft
3 J

(m
or -

. ,, . .
z = for all values or #, and

a 2a 3a
if cc= , or , or

in m m
a 2a (m 1) . ,

, . ,
. . ,

the lines x = , x = , x= *- remain at rest during the whole
in m m

vibration and are nodes. The same thing is true of the lines

b 2?&amp;gt; 3b

73. If the membrane is square it may have much more complicated nodes

than if the length and breadth are unequal, as in this ,case the period of any

term of the general solution reduces to

T=

and there will in general be two terms having the same period, and a musical

note of the pitch corresponding to that period may be produced by initial cir

cumstances that bring in both terms. Thus

,
mirx . mry \~ CTrt= sin- sin M Amn cos -
d (L \_ Cb

, r,+ B
C7r^

/ 2&quot;! 2 I

,n
sin - Vm2+ n*

-J

sin 2 sin ^EI [a a
cos sn
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is a form of vibration that will give a musical note. Let us write this

cirt I r .r
, mirx . mry .

, nirx . miry~\
z = cos \m? -[- n A sin- sin - 4- B sin- sin--

a [_ a a a a _j

C7r^r~r~i of^r wwro; . mry . . nirx . miri/~\+ sin Vmfl + n* I (7 sin- sin 2 + # sm- sm (2)a [_ a a a a J v

and in studying the forms of musical vibration of which the membrane is

capable we may take A, B, C, and D at pleasure. Consider the simple case

where A= C and B= D\ then (2) reduces to

(,
mirx . niry . mrx . miry\/ cirt , _

A sm- sin - + B sin- sin-- II cos \mz
-4- nz

a a a a / V a

Values of x and y that will reduce the first parenthesis in (3) to zero will cor

respond to points of the membrane remaining motionless during the vibration.

Let us consider a few cases at length.

(a) If m = 1 and n = 1
,

the first parenthesis in (3) becomes

in si
a

which is equal to zero only when x = or y = ,
or x= a or y a

,

that is, for the four edges of the membrane. If, then, the membrane is sound

ing its fundamental note it has no nodes.

(b) If m = 1 and n = 2
,
we have

,
irx . 27ry . 2irx . iryA sm sin - -4- B sm- sin - =
a a a a

to give the nodes.

Let B =
,
then sin sin - =

,
which is satisfied by y= -

;
and

a a a
in addition to the edges the line y= is at rest and is a node.

If A =
If A= B
If A Q x = - is a node.

.
irx . 2/iry . 2irx . irysm sm - -U sm sm - =
a a a a

n . irx . iry iry ..... irx irx . iry .
2 sm sm - cos - + 2 sin cos sm - =

a a a a a a

. irx . iry / iry . irx\sm sm -
( cos

- + cos 1=0.
a a \ a a /
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The first factor gives the four edges of the membrane. The second written
equal to zero gives

COS
vy trx / TTX\-^= COS- = COS

( 7T I

# a \ a /

Try TTX
7T

a a

which is a diagonal of the square.
If B= A

. 7TX . 2-7T?/ . 27TX . 7TI/sin sm sin sin - =
a a a a

iry TTX
cos = cos

which is the other diagonal of the square.
Other relations between A and B will give Trigonometric curves of the form

ITU B 7TX
COS = --- COS -

a A a

which are easily constructed and which obviously all agree in passing through
the middle point of the square.
We give the figures for a few of the cases
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(c) If m= n= 2 we have

(A+ B) sin sin^ =
a a

to give the nodes, which are merely the lines

a a
x = -

, and y= -.

This form gives the octave of the fundamental note.

(d) If m= 1 and n= 3 we have

. . TTX . STH/ , STHC . TT?/A sin sin - + B sm sin =
to give the nodes.

If A = we get

a a

,x== and * =

133

= - and y= -

O O
If B= we get

If A= B we get

. 7TX . 37Tt/ . 37TX . 7T?/sm sm : sm sin - =
a a a a

. TTX . iry r tsm sm - 4
a a L

(2)

or

/ Try 7TX\/ Try . 7TX\
I cos cos jl cos - 4- cos I =
V a. a J\ a a /

x y= and

If A= B we get cos2^
-f cos

or

a 2

27TI/ . 2-TTX
COS + COS = 1

,a a

(3)

(4)

a Trigonometric curve easily constructed.

For other relations between A and B we get more complicated Trigonometric
curves coming under the general form

A 2&amp;lt;7r.y , r&amp;gt;

27TCC A + BA cos -
-{- B cos =
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which all agree in containing the points

a a a 2a\ /2a a\ , /2a 2a\
o&amp;gt;T )&amp;gt; (-TT&amp;gt; o)&amp;gt;

an(i
l&quot;S-&amp;gt;-5&quot;l-

A-B



MISCELLANEOUS PROBLEMS.

I. Logarithmic Potential Polar Coordinates.

1. Show that D*V-\-DjV=Q becomes

if we transform to Polar Coordinates.

2. If in

we let F= -K.3&amp;gt; we get

&amp;lt;$
= A cos ad&amp;gt; -j- B sin ad&amp;gt;

)

whence

Y= r a cos

(i)

&amp;lt; + J5 sin ad)
-^

Ae a&amp;lt;
t&amp;gt;

-{- Be a*

|
Bl r~

a ) R= A l cos (a log r) + ^! sin (a log r) ;
)

F=r a sin ad&amp;gt;

V= cos ad&amp;gt;

r*

F= sin ad&amp;gt;

/MA

V=e a
&amp;lt;t&amp;gt; cos (a log r) F= cosh ad&amp;gt; cos (a log r)

V=e-4&amp;gt; sin (a log r)

V=er* cos (a log r)

F&quot;= e-* sin (a log r)

V= cosh ad&amp;gt; sin (a log ?*)

Y= sinh ad) cos (a log r)

F== sinh ad&amp;gt; sin (a log r)

are particular solutions of (1).

3. Show that if F satisfies (1) Ex. 2 and F
=/(&amp;lt;)

when r= a

and

where

for

w

TO
= -

Cfty) cos and

n

aTO
= T/C^)
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4. Show that if V satisfies (1) Ex. 2 and V=f(r) when
4&amp;gt;

= and

J cosh
cos aX-

- sin

COSh
9 (

X &quot;~

&quot;

TT 2 cosh (X
-

log r)
- cos 4

5. If F=l when
&amp;lt;#&amp;gt;

= and OO&amp;lt;1, and T=0 when
&amp;lt;#&amp;gt;

= and

sin*

6. If F=/(r) when
&amp;lt;^&amp;gt;

= and F=0 when
&amp;lt;/&amp;gt;

=
/?

cos a(X
-

log
mh/Sa

M
Z* cosh (X

-
log r)

- cos

if &amp;lt; &amp;lt; &amp;lt; /3 .

7. If F=0 when &amp;lt;

= and V=F(r) when &amp;lt;

=

= ^ sin

cosh (X
-

log r) + cos

8. If F=xW when
&amp;lt;/&amp;gt;

= and r&amp;lt;, F=0 when ^ = j8, and

F=0 when r= a
o

cosh
I (X

+ log I)- cos^
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9. If F=0 when &amp;gt;

= !, F=l when &amp;lt;

= 0, F=0 when &amp;lt;

=

10. If F=0 when ? = !, F=l when &amp;lt;

=
,
F= 1 when

4&amp;gt;

=

11. If F
=/(&amp;lt;)

when r=, F=0 when
&amp;lt;J&amp;gt;

= 0, and F=0 when

. m7rd&amp;gt; . -x

sm - i r&amp;lt;a

where am = /(&amp;lt;/&amp;gt;)

sin ^ and
0&amp;lt;&amp;lt;^&amp;gt;&amp;lt;^.

12. If
F=/(&amp;lt;)

when r= a, F= when r= 6, F^O when ^ = 0,

and F= when
&amp;lt;^&amp;gt;

=
^8 ,

then if a &amp;lt; r &amp;lt; b and &amp;lt; &amp;lt; &amp;lt; (3

where am = &amp;lt;#

sin
/

am = g j

13. If
V=F(&amp;lt;t&amp;gt;)

when r=zZ*, F=0 when r a, F=0 when

and F=0 when
&amp;lt;#&amp;gt;

=
)8, then if a&amp;lt;r&amp;lt;b and &amp;lt;

&amp;lt;^&amp;gt;

&amp;lt; /3

_ sn
2/nrr 2mir

&quot;*

where aw= -
F&amp;lt;fi

sin

14. If V=\(r) when ^ = 0, F=0 when ^ = ^3, F=0 when r=a.
and F=0 when r= b, then if a&amp;lt;r&amp;lt;b and &amp;lt;

&amp;lt;#&amp;gt;

&amp;lt; /8

sinh_ _
log 6 log . mTT(log i log a)_

_!2^_ log * -log*
log b log a
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log-*

2
/&quot; mirx

where am= -----
I x(aeX) sm

log aJ AV ?
-

log b log aJ AV
log & log a

15. If V=\f/(r) when &amp;lt;

= 0, F=0 when
&amp;lt;j&amp;gt;

= 0, F=0 when r= a
t

and F=0 when r= b, then if a&amp;lt;.r&amp;lt;b and &amp;lt;
&amp;lt;f&amp;gt;

&amp;lt; /?

ra7r&amp;lt;f&amp;gt;

&amp;gt;n=oo sinh

^ 5 log ft log a . m7r(log r log a)
r ~ / , &quot;S tf/n _ bill

sinh
log 6 log a

, 2 / .

where am = = : I $(ae
x sm dx.m

logb logaj
r ^

log b log a
\j

II. Potential Function in Space.

1. Show that

00 00 00 00

cos ax - * cos -

for all values of x and ?/.

2. Find particular solutions of DX
2F+ 7&amp;gt;

I?F+ D?V= in the forms

V= sinh z Va2
-!-/?

2
. sin

(a^c ^y)

F= cosh ^
V^aM-&quot;/?

2
. sin (aa; /9^)

&c.

3. Given I&amp;gt;X
2F+ DV

2 V+D?V=Q, and V=f(x,y) when s = 0, solve for

positive values of z.

Result: V-c

4. Confirm the result of the last example by showing that if f(xt y) is inde

pendent of y

F= 1 C zf(x tidx
(v. Ex. 3 Art. 45).
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5. If DlV+D*V+DtV=, and V=l when *= for all points

within the rectangle bounded by the lines x = a, x = a, y=b, and

y= &; and V=Q when z = for all points outside of this rectangle,

then

. qn
(a
-

x)\b a - x)*+ (b
-

y)
2
+.Z

2

]

+ *)
2 + (ft

~
y)

2 + *2

] )

a + x?+ (b
- yf+ ^2

] &amp;gt;

2 2

r
2

if a &amp;lt; # &amp;lt; a
,
and

&amp;lt;(b-y)

_ sin-i
(&quot; + x)\b

-
y)

2 -
z\(a + x? +(l- yY + *a

,
^ + y j sin_i fa a;)

2

(Z&amp;gt;
+ y)

2 zz

[(a x)
2

T
^(6 + ?/)

2 1 ( ^)
2

(^ + 2/)
2+ * 2

[( ^)
2+ + .t

(a + x)\b +

6. If the value of the potential function V is given at every point of the base

of an infinite rectangular prism and if the sides of the prism are at potential
zero the value of V at any point within the prism is

I/&quot;

2
-4-

n2 mTTX . WITTI/ / 7x /*5 sm
^

sin
-^-
1^1

m=l n=l 00
If F= 1 on the base of the prism this reduces to

16 -^r-\ ^A
=^2*-&quot;

sm

sin sin

sm

7. If the value of the potential function on five faces of a rectangular

parallelepiped, whose length, breadth, and height are a, 6, and c, is zero, and
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if the value of V is given for every point of the sixth face, then for any

point within the parallelepiped

. ^ ^\
- *

a&quot; IP . mTrx . mry
~4 ~4 m n /2 nn* en b

sinh TTC \/ - 4-

i
4 C 7v /%/x \ wrA . TWTU .

where A
m&amp;gt;n

= I aA. I /(A, yu) sin sin ~-
dp.

8. If the value of the potential function is given on two opposite faces of a

rectangular parallelepiped and is zero on the four remaining faces, then within

the parallelepiped

sm sm

sinh TTC\ r +

m2
,

w 2

\/ 7 + 772 ^ J

. mirx . n
sm -- sm

4 /* , r , N m?rX . mra
where ^OT ,n

=
J cOf /(A, /*)

sm
-^-

sin ^
o o

a b

and J5
m&amp;gt;n

= - CdX F(\, p) sin ^- sin^^ .

o o

9. If the value of the potential function is given at every point on the surface

of a rectangular parallelepiped, what is its value at any point within the

parallelepiped?

III. Conduction of Heat in a Plane.

1. Find particular solutions of D
t
u = a 2

(D^u + D*u) of the forms

u= r-W + Py sin (ax #/)

u= e~ **a* +^ cos (ax py) .

2. Given the initial temperature of every point in a thin plane plate, find

the temperature of any point at any time,
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7*
e
~

3. For an instantaneous source of strength Q at
(A, ft)

Q (A a) + 0*-y)f

M= i 3:
~

4^ v. Art. 53.
47ra2

For an instantaneous doublet of strength P at (0, ft) with its axis perpen
dicular to the axis of T

v. Art. 54.

For a permanent doublet of strength P at (0, ft) with its axis perpendicular
to the axis of Y

~P &amp;gt; 2

If the strength of the doublet were Pd/jt, and the heat were uniformly

generated and absorbed along the element d/j, of the axis of Y beginning at

(0, ft) we should have

_ P _sn=xj. -*p y
n
-

b
e 4 2&amp;lt; ~T~\ /

-
\Q

== o
-

9 e 4a=t a tan A-
&amp;gt;

27ra* ic
2+ (/-t i/)

2 2?ra2 x

and since d tan&quot;
1 -- is the angle ARA ,

where A and A are the points (0,

and (0,ft + &amp;lt;fyt)
and ^ is the point (x, y), w= when x = unless

JD
ft &amp;lt; y &amp;lt;C ft + d/JL ,

in which case u= if x approaches zero from the
&Q,

positive side; and u= Q when, ^ = except in the element dp. If then

u = when t= and u =f(y) when x = we have only to suppose a

doublet of strength 2a2

f(x)dx placed in each element of the axis of Fand
then to integrate ;

we get

1 C - **+&amp;lt;&amp;gt;-&amp;gt;/)* xfM ju= -
I e

-

4 a2&amp;lt; 2 i / Ts^TTj iC
2 4- (U, V)

2

a-+(^-y)i

For a permanent doublet of strength F(t) at
(0, ft) we have

u=

xF (r)
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From the^reasoning above this must be zero when t = except at the point

(0, IJL),
must be 2a?F(t) at the point (0, fi), and at every other point of the

axis of Y when t is not zero.

Hence if u = when t= and u = F(y, t) when x =

mry /* 7x /V,.^ N . mirX. . mru,

-jj*
I

cZAJ
/(X, /i) sin sm ^ dp .

1 r xF(lLr fy ai + Qt-y)* ,
,

I/*, /* xDT F(fJL,r) sS + Q-y)*
w = ~

I o . / To 4az ayLt H I a/* I 2 . x
N r2 e ^(t-r) &r

TTj X2
4- (fJh ?/)

2 TTj ^J iC
2
4- (/i ?/)

2

00 00

For an extension of this solution by the method of images to the case where

there are other rectilinear boundaries and for its application to the correspond

ing problems in the flow of heat in three dimensions see E. W. Hobson in Vol.

XIX Proc. Lond. Math. Soc.

4. If the perimeter of a thin plane rectangular plate is kept at the tem

perature zero and the initial temperatures of all points of the plate are given,

then, for any point of the plate

m = ; n = oo be
4: ^ ^ 2-2 (* j.

2N
w mirx . n

Ag ^ ^ yj QriT \
+ p Gin QmU &amp;gt; ?j e

Vft* &amp;lt;?

S111
7

S111
be ^4 ^ b
m=l n=l

if b is the length and c the breadth of the plate.

5. A large mass of iron at the temperature contains an iron core in the

shape of a long prism 40 cm. square. The core is removed and heated to the

temperature of 100 throughout and then replaced. Find the temperature of a

point in the axis of the core fifteen minutes afterward. Given a2= .185 in

C.G.S. units. Ana., 52.9.

6. If the prism described in Ex. 5 after being heated to 100 has its lateral

faces kept for 15 minutes at the temperature find the temperature of a point

in its axis. Ans., 20.8.

IV. Conduction of Heat in Spq.ce.

1. Show that

oo oo oo oo oo GO

Cda Cd(3 Cdy CdX Cdp T/(A, p, v) cos a(A x) cos P(p y) cos y(v z).dv000 oo oo oo

=/(*&amp;gt; y&amp;gt; *)

for all values of x, y, and z.

2. Show that

^-\ -\ ^\ .
, mTrx . mry . ptrz

/(*, y, *)
=

2) 2, 2, 4-. sm smV smV
m=l n=l p=l

8 /*/*./ . mTTA . ftTTU . /?7Tl

where Am^ = j d\j dpi /(A, ^ v) sm sm-^ sm^
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3. Obtain particular solutions of D
t
u=

a\I&amp;gt;u-\-
D*u + D?u) of the

forms

u= er^ + P + i* sin (ax fly yz)

cog ax z
&amp;gt;

4 Given the initial temperature of every point in an infinite homogeneous
solid find the temperature of any point at any time.

C 7 C
) *J e

~

5. If the surface of a rectangular parallelopiped is kept at the temperature
zero and the initial temperatures of all points of the parallelopiped are given,
then for any point of the parallelopiped

.

,, 72 sin
-j-

sin sin

l n=l p= 1

where Amn = r~7 I
^

I df* I /(^ ^&amp;gt; ^) gin
; sin sin

ocaj J J bed000
6. An iron cube 40 cm. on an edge is heated to the uniform temperature of

100 Centigrade and then tightly enclosed in a large iron mass which is at the

uniform temperature of 0. Find the temperature of the centre of the cube

fifteen minutes afterwards. Am., 38.4.

7. An iron cube 40 cm. on an edge is heated to the uniform temperature of

100 and then its surface is kept for fifteen minutes at the temperature 0.

Required the temperature of its centre. Ans., 9. 5.



CHAPTER V.*

ZONAL HARMONICS.

74. In Art. 16 we obtained

[v. (6) Art. 16] as the general solution of Legendre s Equation

^
^ dx 2

(1)

z

m being wholly unrestricted in value and x lying between 1 and 1; where

Pm(*;
= i-

and

ym\x)
== x

and we found

2 .

4!

m(m - 2) (m
-

4) (m + 1) (m + 3) (m + 5)

6!
-a-h- (d)

-l)(m + 2)

3!

2)(m
5!

(m - l)(m
-

3)(m
-

5)(m + 2)(m + 4)(m + 6)

7 ,

* -1

-IT

(
COS #)

,

m being unrestricted in value, as particular solutions of the special form

assumed by Laplace s Equation in spherical coordinates when V is independ
ent of

&amp;lt;;
that is, of the equation

rD?(r V) +-^ Do (sin 6D9 T)=0. (6)

* Before reading this chapter the student is advised to re-read carefully articles 9, 10, 13(c),

15, 10, and 18(c).



SURFACE ZONAL HARMONICS.

For the important case where m is a positive integer we found

145

(7)

[v. (10) Art. 16] as the general solution of Legendre s Equation (2), whence

V=rmPm (cos B)

V

(8)

are particular solutions of (6) if m is a positive integer.

|

^(m-l)(m-2)(^-3)
..&quot;1

2.4.(2m l)(2w 3) J

[v. (8) Art. 16] and is a finite sum terminating with the term which involves

x if m is odd and with the term involving x if m is even.

It is called a Surface Zonal Harmonic, or a Legendre s Coefficient, or more

briefly a Legendrian.

i m-fi) W,-f 2) i

(2m -f 1) (2m 1) 1 _x&quot;&amp;lt;

+ *&quot;

2. (2 wi + 3) xm + 8

(m + l)(^ + 2)(/^ + 3)(m + 4) 1 H
2.4.

(2w/. + 3) (2m+ 5) cc
+ 5 ^ J ^ }

if a:&amp;lt; 1 or x&amp;gt;l. [v. (9) Art. 16.]
It is called a Surface Zonal Harmonic of the wmid hind.

__ !!+! 2.4.6. . . . (m
~~^

3.5.7. ... m
[v. (13) Art. 16] if m is odd and 1&amp;lt; x &amp;lt; 1.

2.4.6. ...

1.3.5.... (m-
[v. (14) Art. 16] if m is even and 1&amp;lt; a; &amp;lt; 1.

(12)
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In most of the work that immediately follows we shall regard x in Pm(x) as

equal to cos and therefore as lying between 1 and 1.*

75. In Article 9 the undetermined coefficient am of xm in Pm(x) was

arbitrarily written in the form
*- ^

.

--- for reasons which shallm
now be given.

In Articles 9 and 16 z = Pm (x)
was obtained as a particular solution of

Legendre s Equation

by the device of assuming that z could be expressed as a sum or a series of

terms of the form anx
n and then determining the coefficients. We can, how

ever, obtain a particular solution of Legendre s Equation by an entirely differ

ent method.

The potential function due to a unit of mass concentrated at a given point

(*u y\&amp;gt; *i) is

V-
,

1
(2)

^x-xtf+^-ytf +(*-*,?
and this must be a particular solution of Laplace s Equation

Q, (3)

as is easily verified by direct substitution.

If we transform (2) to spherical coordinates using the formulas of

transformation
x= r cos 6

y=r sin cos &amp;lt;

z= r sin sin &amp;lt;

we get

-== (4)
Ol + sin sin 0! cos(&amp;lt; &amp;lt;fo)] + n

as a solution of Laplace s Equation in Spherical Coordinates

rDr\r V} + A(sin A F) +^ D|F= [xm] Art. 1.

If the given point (xl} yl} zly)
is taken on the axis of X, as it must be that

(4) may be independent of
&amp;lt;f&amp;gt;,

Oi
=

,
and

(5)

* English writers on Spherical Harmonics generally use n in place of x for cos 0. We

shall follow them, however, only when we should thereby avoid confusion.
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is a solution of

rDr\r V) +^ A(sin BD9 V)= V.
(6)

Equation (5) may be written

VI 2s cos + z2
is finite and continuous for all values real or complex of

K. It is double-valued but the two branches of the function are distinct except
for the values of z which make 1 2z cos 9 -\- z?= namely z= cos + i sin

and z = cos i sin 0, both of which have the modulus unity and which are

critical values.

,
= is finite and continuous except for the values of

VI 2z cos 8 + 2*

z= cos i sin and *= cos -f i sin for which it becomes infinite
;

it is

double-valued but has as critical values only these values of z. It is then

holomorphic within a circle described with the origin as centre and the radius

unity, and can be developed into a power series which will be convergent for

all values of z having moduli less than one.
(Int. Cal. Arts. 207, 212, 214,

220.)

If then r &amp;gt; ^ = can be developed into a convergent series

involving whole powers of .

Let ^pm ~ be this series, pm ,
of course, being a function of cos 0. Then

[v. (7)] is a solution of (6). Substitute this value of Fin (6) and we get

As this must hold whatever the value of r provided r &amp;gt; rv the coefficient of

each power of r must be zero, and hence the equation

sin OdB
must be true.

(sin ^) + m(m + l)Pm= (9)
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But as we have seen in Art. 9 the substitution of x = cos 6 in (9) reduces

it to

and therefore z=Pm

is a solution of Legendre s Equation (1).

If r &amp;lt; /-i
- can be developed into a convergent series

V2ii
r

cos e + -

involving whole powers of -
rm

r\

Let be this series. Then

(v. 8) is a solution of (6) ; substituting in (6) we get

whence it follows as before that

is a solution of Legendre s Equation

\

more briefly it is the coefficient of the mth power oi z in the development of

/I _ 2xz + z 2

)- ? according to powers of
, standing for cos 6.

(1
- 2xz + s2

)- i
=

[1
-

2(2*
-

s)]- i

and can be developed by the Binomial Theorem; the coefficient of zm is easily

picked out and is

(2m l)(2w 3)---l |~ _ w(m - 1) 2

ml L 2(2m-l)
-

2.4. (2m l)(2m 3)

_ H
_T

But this is precisely Pm(x). [v.
Art. 74 (9)]

Hence Pm(x)
is equal to the coefficient of the mth power of z in

the development of [l 2 + **]&quot;*
into a Power series, the modulus of

being less than unity.
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76. If x= l PM(x)
= l. For if x = 1

(1
-

2.vr: + z*)- reduces to

(1 2z + z2

)-? that is to
(1 z)-

1

,
which develops into

and the coefficient of each power of z is unity. Therefore

Pm(l)
= l.

(1)

We have seen that if m is even Pm (x) contains only even powers of x and
terminates with the term involving x

,
that is with the constant term.

The value of this constant term can be picked out from the formula for

Pm (x) [v. Art. 74 (9)]. It is (- 1)5 l^l^L-J) ; 01.

it can be found as

follows: It is clearly the value Pm(x) assumes when # = (); it is, then, the

coefficient of zm in the development of (1 -f 3*)- i ;
but

and the coefficient of zm
,
m being an even number, is ( 1)2

&quot; ^ - ^
.

2.4.6 m
If m is odd Pm(x) contains only odd powers of x and terminates with the

term involving x to the first power. The coefficient of this term can be

picked out from (9) Art. 74 and is (- l)^*
3 1

&quot; m
-; or it can be

^.4.O. (Wi Lj

found as follows : It is clearly the value assumed by - ^^ when x=
dx

It is, then, the coefficient of zm in the development of
z

Z
_ z= ^ - -U

2.4

m-l
and the coefficient of zm in this development is ( 1) 2 ri

2.4.6 &quot;

(m 1)m being an odd number.

77. To recapitulate:

, mtm-i^m-^m-^
2.4. (2m -1) (2m -3)

_ m(m - l)(m - 2)(m
-

3)(m
-

4)(m 5) m _ H
2.4.6. (2m l)(2m 3) (2m 5) J W
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m being a positive integer, is a Surface Zonal Harmonic or Leyendrian of the

mth order. It is a finite sum terminating with the first power of x if m is

odd, and with the zeroth power of x if m is even.

Pm(a) is the coefficient of the mth power of z in the development of

(1 2xz -+- 2
2

)~ into a power series. Hence if * &amp;lt; 1

x).z&amp;gt; + -. (2)

Whence

+ -

.-]
if r

i
fpo(cos tf) + -

P^cos 6) + - P2(cos 0) +
PI L ^i ^i

.if

is a solution of Legendre s Equation

when m is a positive integer.

F= r&quot;

IPIB(cos d)

and r= _J_
Pwi(cos ^

are solutions of the form of Laplace s Equation in Spherical Coordinates

which is independent of
&amp;lt;, namely

rJ9r
2

(r V) 4- -T^JA (sin De V) = 0. (4)
sin v

2.4.6.- --2m

(8)

(9)
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rdP^x)-} 3.5.7. (2w + 1)

L dx J e
^ ;

2.4.6.- &quot;2m
(10)

For convenience of reference we write out a few Zonal Harmonics. They
are obtained by substituting successive integers for m in formula (1).

P1(x)=x

P4
(&amp;lt;c)

=
(35z

4 - 30z2+ 3)

P.(a;)
=

(231*
6-

P7 (a?)
=i

(429,-c
7 -

Ps(x)
= i

105;r2-
5)

-
35x)

(11)

Any Surface Zonal Harmonic may be obtained from the two of next lower
orders by the aid of the formula

(n+l)Pn + l (x)
-

(2n-}-l)xPH (x) + nPn_ 1 (x)=:0 (12)

which is easily obtained and is convenient when the numerical value of x is

given.

Differentiate (2) with respect to z and we get

whence

Hence by (2)

-
x) (P (oj) + PI(X).Z --)= (13)
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(13) is identically true, hence the coefficient of each power of must vanish.

Picking out the coefficient of zn and writing it equal to zero we have formula

(12) above.*

78. We are now able to solve completely the problem considered in Art. 9.

We were to find a solution of the differential equation

rD*(r F) + De(sm ODe V)=0 (1)

subject to the condition

We know (v.
Art. 77) that

and

are solutions of
(1).

For values of r &amp;lt; c

(3)
G 2 c

2 2.4 c
4 2.4.6 c

8

Therefore for values of r &amp;lt; G

(cos d)
-

\

is our required solution; because each term satisfies equation (1),
and there

fore the whole value satisfies (1),
and when =

[v. (5) Art. 77], and hence (4) reduces to (3) and (2) is satisfied.

For values of r &amp;gt; c

M _Mr. _l* l^^_1^6c! , &quot;1

~~L 2r2
&quot;

t
&quot;2.4r

4
2.4.6r&quot;

r J

2 r8 2.4 r6 2.4.6 r7

* For tables of Surface Zonal Harmonics v. Appendix Tables I and II.
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Therefore for values of r &amp;gt; c

is our required solution. For it satisfies (1) and reduces to (2) when = .

79. As another example let us suppose a conductor in the form of a thin

circular disc charged with electricity, and let it be required to find the value

of the potential function at any point in space.
If the magnitude of the charge is M and the radius of the plate is a the

surface density at a point of the plate at a distance r from the centre is

M

and all points of the conductor iir.j at the potential (v. Peirce s New-
&k

tonian Potential Function, 61.)

The value of the potential function at a point in the axis of the plate at the

distance x from the plate is easily seen to be

d /M . x2 a*\ M
m I _, /&quot;*r)^~~ -_ I --

dx\2a x*+ a2/ a* + x

_M
if

x&amp;lt;ia,

.i

if x&amp;gt;a.

Integrating and then determining the arbitrary constant we have

M .x*a* M\~7r x . xs x5
,

a-
7

&quot;I__
(&amp;gt;Qg

1_ -. _ I _ _____ __ _J__ __ I

2a x*+ a2 a[_2 a ^ 3a* 5a6 ^ la 1 J
if x &amp;lt; a

,

= ^1&quot;--- 4- 4-&quot;

a [_x 3x*
^

5x6
Ix*
+

if x&amp;gt;a.
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We have, then, to solve the equation

rDr\r V) +~ D9 (sin BD6 F) =

subject to the conditions

V-EVl-L^.^. ^4.-^- ...1
a |_2 a^ 3 3 5 5 ^ 7 7 J

when = and r
&amp;lt;

a

, M \~a a8 a6 a7

and r
-7U&quot;l?

+
S=i&quot;7i5

+

when = and r &amp;gt; a .

The required solution is easily seen to be

if r &amp;lt; a and &amp;lt;

-

,

and r--
if r&amp;gt;a.

EXAMPLES.

1. Given that if a charge JK&quot; of electricity is placed on an ellipsoidal con-

ductor the surface density at any point P of the conductor is equal to j^;c
&amp;gt;

where p is the distance from the centre of the conductor to the tangent plane at

P (V. Peirce, New. Pot. Func. 61) ;
find the value of the potential function at

any external point when the conductor is the oblate spheroid generated by the

rotation of the ellipse
-
2+ ^2

= 1 about its minor axis.

Ans. (1)
If the point is on the axis of revolution

M r . _, / bx+ ^- &

a; being the distance from the centre.

(2)
If the point is on the surface of the spheroid
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(3) If the distance r of the point from the centre is less than ^a2 b2 and

(4) If the distance r of the- point from the centre is greater than ^a2 b2

P2(cos 0)

2. If the conductor is the prolate spheroid generated by the rotation of the

x2
y
2

ellipse 2+ 7}
= 1 about its major axis, show that if the point is an external

point and is on the axis at a distance x from the centre,

r=

If the point is not on the axis and r &amp;gt; V^2 b2

80. As a third example we will find the value of the potential function due

to a thin homogeneous circular disc, of density p, thickness k, and radius a.

The value of F at a point in the axis of the disc at a distance x from its

centre is readily found and proves to be

and F = ?^ fi - -~~
a [_2x 2. 2.4.6 x-

6 2.4.6.8 7

&quot;I
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If x&amp;lt;a

*2 1.1 a* 1.1.3 a;
8

_2J[fr i
a la2 1.1 g*

,

1.1.3 a;
6

_
1.1.3.5 x

~|F ~T L a
+ 2^2 ~~2.4*+ 2.4.6a6 2.4.6.8a8

~t
&quot;

J
*

Hence the solution for any external point is

if r &amp;gt; a, and

if ^&amp;lt;a and

EXAMPLES.

1. The potential function due to a homogeneous hemisphere whose axis is

taken as the polar axis, is

if r &amp;gt; a, and is

if r&amp;lt;a and

2. The potential function due to a solid sphere whose density is propor

tional to the distance from a diametral plane is, at an external point,
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3. The potential function due to the homogeneous oblate spheroid generated

x2 y2

-

by the rotation of
2+ j-2

= 1 about its minor axis is, at an external point,

.^ _ . (sin~ l \
a

a &quot;&quot;&quot;I

+ sin~ l

j
x

F 3 *
2 (a

2- b2) _ 2(

if the point is on the axis of the spheroid at a distance x from its centre.

3 r ~^5 r8
-2p*(GOs6)

i (
a
-y)ir

5.7 r5

if r &amp;gt; (a* b2
)^ ,

and

3M r~7r r .., TT r2

F
=^ir^iL4-(^^i Pl (

cos ^ +4?^^ p2 (

1 r8

cos

a2 -^2 i andif

x
generated by the rotation of ~

2 -\~~2
==

4. The potential function due to the homogeneous prolate spheroid
2 2

ts major axis is, at an

external point,

r
* fi i2lnQ^ +i (&quot;

-^S P rcos w
(o J)tLl.3 r ^3.5 r8

if

81. The method employed in the last three articles may be stated in

general as follows: Whenever in a problem involving the solving of the

special form of Laplace s Equation

the value of V is given or can be found for all points on the axis of X and

this value can be expressed as a sum or a series involving only whole powers

positive or negative of the radius vector of the point, the solution for a point
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not on the axis can be obtained by multiplying each term by the appropriate

Zonal Harmonic, subject only to the condition that the result if a series must

be convergent.

It will be shown in the next article that Pm (cos 0) is never greater than

one nor less than minus one. Hence the series in question will be convergent

for all values of r for which the original series was absolutely convergent.

82. In addition to the form given in
(1)

Art. 77 for Pm (x) other forms

are often useful.

It ought to be possible to develop PTO (cos 0), which may be regarded as a

function of 6, into a Fourier s Series, and such a development may be obtained,

though with much labor, by the methods of Chapter II.

The development in terms of cosines of multiples of may be obtained

much more easily by the following device.

We have seen in Art. 75 that Pm (cos 0) is the coefficient of the mth power
of z in the development of (1 2 cos 6 + 2

)~i in a power series, and that

if mod z &amp;lt; 1 (1 2z cos -f- #2

)~i can be developed into such a series. We
know by the Theory of Functions that only one such series exists, so that the

method by which we may choose to obtain the development will not affect the

result.

(1
- 2z cos + *2

)-i = (1
-

z(e
Gi + -&quot;) + z2

)-i

n ze *)-^ may be developed into an absolutely convergent series if

mod z &amp;lt; 1
, by the Binomial Theorem. We have

The product of these series will give a development for (1
2z cos -f z2

)- %

in power series. The coefficient of zm is easily picked out, and must be equal

to Pm (cos 0). We thus get
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1.3.5 m(m l)(m 2) &quot;1 ,.,.

1273 (2-l)(2-8)(2-6) cos(m
-

6)0+ J
.

(1)

If m is odd the development runs down to cos 0; if m is even to cos (0), but

in that case the coefficient of cos (0), that is, the constant term, will not contain

the factor 2 which is common to all the other terms, but will be simply

ri.3.5&quot;-(m 1)~|
2

L 2.4.6. w J
We write out the values, of Pm (cos 6) for a few values of m

P (cos0)
= l

pl (cos 0)
= cos

P2 (cos 0)
-

(3 cos 20 -f 1)

P3 ^cos 0)
=

(5 cos 30 + 3 cos 0)

P4 (cos 0)
=

(35 cos 40 + 20 cos 20 + 9)
t)4

P5 (cos 0)
=

Tog [63 cos 50 + 35 cos 30 + 30 cos 0]

P6 (cos 0)
=

gig C231 cos 6# + 126 cos 4 + 1Q5 cos 20+ 50]

P7 (COS 0)
= j^j C429 COS 7^ + 231 COS 5^ + 189 COS 30 + 175 COS ^]

P8 (cos 0)
= [6435 cos 80 + 3432 cos 60 + 2772 cos 40

+ 2520 cos 20 + 1225] .

(2)

Since all the coefficients in the second member of (1) are positive, and since

each cosine has unity for its maximum value it is clear that Pm (cos 0) has

its maximum value when = 0; but we have shown in Art. 76 that Pm (1)
= 1.

Therefore Pm (cos 0) is never greater than unity if is real. It is also easily
seen from (1) that Pm (cos 0) can never be less than 1.
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83. Pm (x) can be very simply expressed as a derivative. We have

m(m-l)(m-2)(m-3) H
2.4. (2m l)(2m 3) J

aJ

(m + 1)! 2.(2m-l)

(m + l)m(m-l)(m-2) m_ 8 _ ~]T
2.4.(2m-l)(2m-3)

&quot;

J

m (x)dx

(2m-l)(2m-3)&quot;-i

.(2m-l)

-3)&quot;-ir (m + 2)(m ,

2)I L 2.(2m-

2.4.(2m l(2m -3)
t_ 2 _ H

&quot;

J

CmP (x^dxm- (2m-l)(2m-3)--l r _ 2m(2m-l)
J

*m(?
(2m)! L 2(2m-l)

2m(2m l)(2m 2) (2m
--

3) 2m_ 4 _ &quot;1

&quot;*

2.4. (2m -1) (2m -3) &quot;J

__ (/m )( m ~~
)&quot;

|^
2m _ mx 2 &amp;gt;n -2 m(m ) ^_ 4

(2m)! L 2!

m(m l)(m 2) 2m_ 6 ,

~]

31
~ X

&quot;*

J*

The quantity in brackets obviously differs from (or
2

l)
m
by terms involving

lower powers of x than the mth.

This important formula is entirely general and holds not merely when

x cos 0, but for all values of x.
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84. The last result is so important that it is worth while to confirm it by

obtaining it directly from Legendre s Equation

v. (1) Art. 75.

Let us differentiate (1)
with respect to a a few times representin

&quot; by *&quot; &c - We get

J2-1 flj~
**&amp;gt; i

~ 2 2x^ + [m(m

d^z&quot; da&quot;

^

(1
~ ^2

) 5T
~ 2-4* + [^(^ + 1) -2(1

and in general

or
(1

x2

) ^~- 2(/i H- l)z -y-+ [m(m + 1) w(n + l)]
(n) =

. (2)

Following the analogy of these steps it is easy to write equations that will

differentiate into
(1).

will differentiate into (1),

if differentiated twice will give (1),

(1
-

x&quot;)^ + 2.2*
|j!
+ [m(m + 1)

-
2(1 + 2)&amp;gt;.

=

if differentiated three times will give (1), and in general

(1
~ x2

) + 2(n
-

l)x + [m(m + 1)
- n(n - 1)] zn= (3)

if differentiated n times with respect to x will give (1).

If n= m + 1 (3) reduces to

(4)
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and the (m + l)st derivative with respect to x of any function of x which

satisfies (4) will be a solution of
(1). (4) can be written

and can be readily solved by separating the variables and integrating, v. Int.

Cal. (1) page 314. It gives

zm =C(x* -1).
. _

Hence = = C - - -
(5)dxm dxm

is a solution of Legendre s Equation (1) and agrees with the value of Pm(x)

obtained in ^.rt. 83.

85. The equations obtained in Art. 84 are so curious and so simply related

that it is worth while to consider them a little more fully.

We have seen that

differentiates into

Cl -T&amp;gt; + &amp;gt;(-!&amp;gt; I+ *&quot;-&amp;lt;&amp;gt;! W
that if we differentiate (2) m times we get Legendre s Equation

(1 -x*) ^j2 -2x^ + m(m + 1&amp;gt;

= 0; (3)

that if we differentiate (2) 2m times we get ,

(l-^g-2( + l)x|
= 05 (4)

that if we differentiate (2) m n times we have

(1
- x2

)g+ 2(7i
-

1)3 |-
+ [m(m + 1)

-
n(n
-

1)]*= 0; (5)

and that if we differentiate (2)m + n times we have

= 0. (6)

By the aid of (1) we found in the last article a particular solution of (2),

namely
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If we substitute in (2)
z= u(x

2

l)
m

following the method illustrated

fully in Art. 18, we get as the general solution of (2)

-
1( (7)

A and B being arbitrary constants.

/dx-1\M+1 is easily written out [v. formula (42) page 6. Table of Inte-
(X L)

grals. Int. Gal. Appendix]. If x &amp;lt; 1 it vanishes when x= 0. If x &amp;gt; 1 it

vanishes when x= oo . If then x &amp;lt; 1 (7) can be written

z= A(x*
l)&quot;&amp;gt;
+ B(x* !) C-~

J&amp;lt;*-

and if x &amp;gt; 1

dx

00

=
A(x*

-
1) + B(x* l)

m C d*
m + l (9)

*/ (x l )

. (
5

and in these forms unnecessary arbitrary constants are avoided.

From (7) we can get the general solutions of (3), (4), (5), and (6).

is the general solution of
(3).

^^_ 1

rfx
2&quot;

is the general solution of (4).

.lm n/^2 - -J\m

&amp;lt;

= A
d-^^- +

is the general solution of (5).

is the general solution of (6).

In each of these forms A and B are arbitrary constants and the integral is

to be taken from to x if x &amp;lt; 1 and from x to oo if x &amp;gt; 1.

Of course (10) must be identical with the forms already obtained in Arts. 16

and 18 as general solutions of Legendre s Equation.

Equation (4) is so simple that it can be solved directly, and we get its

solution in the form

which must be equivalent to (11).
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Comparing (14) with (7), the solution of (2),
we see that every solution of (4)

can be obtained from a solution of (2) by dividing the latter by (x* l)
m

,
or

in other words that if we write (2)

and (4) as
(1 x 2

) -^ 2(m + l)x y-
1 =

(4)

z = z^(x
2

l)
m

;
and the substitution of this value in

(2)
will give (4), and

the substitution of z t ^
T--

m in (4) will give (2).
(x&amp;gt;

~~~
_l_ )

We have, then, two ways of obtaining (4) from (2) ;
we may differentiate (2)

2m times with respect to x, or we may replace z in (2) by z^(x~ l)
w

.

If we use the first method we have seen that Legendre s Equation (3) is

midway between (2) and
(4). That is if we differentiate (2)

m times we get

(3) and if we then differentiate (3)
m times we get (4). Let us see if the

half-way equation in our second process is Legendre s Equation.

T-P / 2 *1 \

and y= z,(x
2

l)f

So that if in (2) we replace by y(x
i

l)f and then repeat the operation

on the resulting equation we shall get (4). Making tjie first substitution we

find,

=
) (15)

not Legendre s Equation but a somewhat more general form. Of course its

solution is

(2) and (4) are special forms of (5) and (6).
Let us try the experiment of

bstituting in (5)
=

y(l #2
)f and

both substitutions give the same equation

substituting in (5)
=

y(l #2
)f and in (6) *= y We find that

(LX)

(17)
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The solution of (17) can be obtained from either (12) or (13) and is

or

which of course must be equivalent.

86.
t

In addition to the value of Pm(x) given in (1) Art. 83 there is another

important derivative form which we shall proceed to obtain. It is

We have seen in Art. 75 that can be developed into
r I TI r *

a convergent series if 1\ &amp;lt; r and that the (m + l)st term of that series is

Pm(cos fl)/-! Let us obtain this term by Taylor s Theorem.

1

_ 2 H1
cos e 4-

~~
t&amp;gt;r cos

Regarding this as a function of (x v^) and developing according to powers
of i\ by Taylor s Theorem we get as the (m + l)st term

1

orm

Hence = D.- .

r&quot;

l + 1 w! \r/

87. We have now obtained four different forms for our zonal harmonic,

a polynomial in x, an expression involving cosines of multiples of 0, a form

involving an ordinary rath derivative with respect to x, and a form involving-

a partial rath derivative with respect to x. We shall now get a form due

to Laplace, involving a definite integral.

C
J a b cos &amp;lt; (a

2

if a*&amp;gt;b
2

[v. Int. Cal. page 68].
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1 1
.* o ^ , ^ i can be expressed in the form i by taking a = 1 zx

and b= z \Jx
2

l and no matter what value x may have z can be taken so small

that a2 will be greater than P. Then by (1)

1
__!_ f d$ _1 r d^

(1
- 2xz -f z2

)^ ~7rJ i zx - z s/^Tl. cos ^
~

7^J i _ 3(3 _|_ v/^Tl. cos $)

1 ^ ,= -
J [1 + (x + Vz2

1. cos
&amp;lt;$)z + (a; + Va;

2
1. cos

T/
. cos

if is taken so small that the modulus of z(x+ V a;
2

1. cos ^) is less than 1. But

by Art. 77 (2)Pm(x) is the coefficient of m in the development of

hence Pw(a)
=
^ J*|&amp;gt;

+^2 -l. cos
&amp;lt;^&amp;gt;]-^

.

(2)

By replacing &amp;lt; by TT
&amp;lt;/&amp;gt;

in
(2)

we get

- !. cos
&amp;lt;H&amp;lt;ty

.

(3)

and if mod -
&amp;lt; 1 or in other words if

(l-2^ + a
)*~&quot;*/

1 __ 2a.l + lU

mofl 2 &quot;&amp;gt; 1 -
- * can be developetl into a convergent series involv-

V
1 2a!

*
+

i /IYB

ing powers of -, and the coefficient of (-) will be P^(ic); but this will be

the coefficient of z~m
~ l in the development of -p JJTI according to

( _L ,/ ,V ~p* ^ ) 2

descending powers of z, mod 2 being greater than 1.

If now we let a= zx 1 and b= z \lx
2 1

,
a2 &2 = 1 2-rs 4-

2 and

g may be taken so great that a2 i2
&amp;gt; 0. Then by (1)

2xz -f-
2

)&quot;2&quot; TTJ ~x_ i _ z yx*
i. cos

I

o (x \ix* 1. cos
^&amp;gt;)

1
7
====

.if L_
~&quot;

?rJ /r __ i/^ITl
o I* V&quot;

6 * cos
&amp;lt;/&amp;gt;) L

(a; Va;
2

1. cos

1

(x six* 1.
cos&amp;lt;)
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n

and the coefficient of z~ m
~ l

is -J j==^ &amp;gt;&amp;gt;[ + i

Hence Pm(x)
= ^ f =J* - W
WJ [Z V* 2

I- COS
&amp;lt;/&amp;gt;]

&quot; +

Replace &amp;lt; by TT
&amp;lt;f&amp;gt;

and we get

*.(*)= 4/rr&quot; /
\ X ~~ cos

88. In the problems in which we have already used Zonal Harmonics

(v.
Arts. 78-81) we have been able to start with the value of the Potential

Function at any point on the axis of X, and it has been necessary to develop

the expression for V on that axis in terms of ascending or descending powers

of x. If, however, we start with the value of V in terms of for some given

value of r, that is on the surface of some sphere, we must develop the function

of in terms of zonal harmonics of cos (v.
Art. 10), and our problem becomes

the following: To develop a given function of cos in terms of zonal har

monics of cos 0, or to develop a given function of x in terms of the functions

Pm (x),
x lying between 1 and 1.

The problem resembles closely that of developing in a Fourier s series,

which we have already considered at such length.

Let f(x) = A P (x} -4- A P fx) -4- Ai&amp;gt;P&amp;lt;,(x*}
-4- A P (x) -f- (1)

for all values of x from 1 to 1 and let it be required to determine the

coefficients.

If /(x) is single-valued and has only finite discontinuities between x = 1

and x = 1 we may proceed as in Art. 19.

Let us take n-\-1 terms of (1) and attempt to determine the coefficients.

Take n-\-l values of x at equal intervals Ax between x= 1 and x 1

so that (n + 2)Ax = 2; /( 1 -f Ax), /( 1 + 2Ax), /( 1 -f 3Ax),

/[ 1 + (, + l)Ax] will be the corresponding values of /(x). Substitute

these values in (1) and we have

/(- 1 -f Ax) = APo(- 1 + Ax) + -4iPi( 1 + Ax)

+ A,P,(- 1 + Ax) + - + AnPn (- 1 + Ax)

/( 1 + 2Ax) = APo( 1 + 2Ax) -f A^( 1 + 2Ax)

-f A,P2(- 1 + 2Ax) + + APn (- 1 -f 2Ax)

/(I Ax) = APo(l Ax) -f AiPi(i Ax) + ^2P2(1 Ax) +

that is, n -f- 1 equations from which in theory the n -f- 1 coefficients

AQ, A l}
- - An can be determined.
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Following the analogy of Art. 24 let us multiply the first equation by
Pm (

1 + Ax).Ax, the second by Pm (
1 + 2Ax).Ax, the third by

Pw (
1 -|-3Ax).Ax, &c., and add the equations. The first member of the

resulting equation is

2/(- 1 -f Mx)Pm(- I + Mx).Ax , (3)

fc= i

and the coefficient of any A as ^4
Z
in the second member is

fc=n+l

2)Pm(- 1 + &Ax)P,(- 1 + *Ax).Ax. (4)

it=]

If now n is indefinitely increased (3) approaches as its limiting value

i

Cf(x)Pm(x)dx (5)

JL

i

and (4) approaches Cpm(x)Pl (x)dx . (6)

~i

We have now to find the value of the integral (6) or as we shall write

it for the sake of greater convenience

KQ ~mv~/-wv-/- 2m + nmlnlJ dxm dxn
-i -i

by (1)
Art. 83.

l
i

J dxm dxn L dx ax I

-i

|

^
:

^ dx (1)

-I

by integration by parts.

Now if z= X(x
2

l)
w

// &amp;gt;

^
6^*&amp;gt;C 1 tt-U./ _J

Hence the j9th derivative with respect to x of any function of x containing

(x
3

l)
n as a factor will contain (x

2
l)

n ~ p as a factor if p &amp;lt; n .
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/n-l/T2 - ]\ n- -
&amp;gt; then, contains (xz

1) as a factor and is zero when x = 1
dxn~

and when x = 1
,

so that (1) reduces to

z
&quot;(.r

2

1)&quot;
dn

(x* 1)&quot; _ ^ +
fo-

3

!) ^&quot;-ifa

2

1)

&amp;lt;fo--i

1 1

/\Z
&quot;(.r

2

!) dn
(x* 1)* _ _ ftp*

J dxm dxn J
i

2
l

It follows that

a.-l ^^a;a~) d*-g(s-l)

^a;
-

1)&quot;
tf *

^a*
-

1)^
i

If m&amp;lt;.n we get from (3)

Af(s -i)&quot; ^(.r
2 -i)

1&amp;gt; ^2m
,7

J&quot; &?- cto- ^J&quot;

If

Af
J

If, then, m is not equal to n

i

n

i

If m= w we have to find T

Cpm(x)Pn(x)dx = 0.
(4)

(3),
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i i

C(x* l)
mdx = C(x l)

m
(x -f l)

mdx = ^ r C(x l)
m
~\x + 1

J J in ~T -U/

ml

_

*

Hence

22 +1m!

or

22m
(m\y (m + V)(m + 2) (2m + 1)

l- mfa/J dx = :

2?^ + l

90. The solution of the problem in Art. 88 is now readily obtained, and

we have

,(x) + A,P,(x) + (1)

where Am = f(x)Pm(x)dx. (2)

The function and the series are equal for all values of x from x = 1 to

x _ ^
^

an(j y/x^
js subject to no conditions save those which would enable us

to develop it in a Fourier s Series, [v. Chapter III.]

Of course (1) can be written

/(cos 0)
=AP (cos 0) + AiP^cos 0) + ^2P2 (cos 0) H

where Am = y/(cos 0)Pm (cos 0)^(cos 0)

i

or if /(cos 0)
=

^(0)

F(ff)
= A PQ(cos 0) + -4iPi(cos 0) + ^2P2(cos 0) -\ (3)

where Am=
2-^F(0)Pm(cos 0) sin 0.^0 (4)

o

and the development holds good from *= to TT.

If /(x) is an even function, that is, if /()=/() (1) and (2)
can be

somewhat simplified. For in that case it can be easily shown (v.
Art. 77) that
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i

and that Cf(*)*** +1(x)dx= 0-,

?

so that if /(- aj) =/(*)

f(x)
= A P

(x) + A, P,(x) + A,P4 (a?) + 4,Pe (a?) + (5)

where An = (4* + l)J/(aj)P
tt(aj)daj

.
(6)

If /(#) is an odd function, that is, if /( x)
=

f(x) it can be shown in

like manner that

f(x) = AyPi(x) + A aP,(x) + ABPt(x) + A,P,(x] + (7)

i

where J
2fc;h ,

=
(4/c + 3)^f(x)PK+1(x)dx. (8)

If it is only necessary that the development should hold for &amp;lt; x &amp;lt; 1 any
function may be expressed in form (5) or (7) at pleasure.

i

91. We can establish the fact that
|
Pm(x)Pn(x)dx = by a more gen-

i

eral method than that used in Art. 89.

Let Xm be any solution of Legendre s Equation

[p
- *2) I] + ?

&quot;(

m + v* = i&amp;gt; w Art - 16J-

which with its first derivative with respect to x is finite, continuous, and

single-valued for values of x between 1 and 1, 1 and 1 being included.

Then

and
(1
_x2)+M(B + lXn = . (2)

Multiply (1) by Xn and (2) by Xm and subtract and integrate and we get

[m(m + i)
_

n(n + i)]^^^ =Jxm
[(1

-
^)^
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Integrate by parts,

Whence ^^A =

unless m= n.

(3) gives at once the important formula

CYYJ
JV^ =

m(

_..a\ T dXm Y dX
dx dx

from which come as special cases

I Pm(x)Pn(x)dx =J
X

and since Pc (aj)
= 1

,
.

m(m + 1)

unless m= .

EXAMPLES.
i

1. Show that Cpm(x)dx= if m is even and is not zero.

a=i 1 3.5.7.

K+) 2.4.6.... o
odd. v. Art. 91 (7) and Art. 77 (10).

2. Show that

i

Cpm(x)Pn(x)dx = if m and n are both even or both odd.

m + n + 1 , t n !

= (-1)

if m is even and n odd. v. Art. 91 (6) and Art. 77 (8), (9), and (10). cf. J. W.

Strutt (Lord Kayleigh) Lond. Phil. Trans. 1870, page 579.

i

3. Show that f[Pw()]
2^ = V-r v. Art. 89 (5)J 2m -4-1
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92. Formula (4) Art. 91 can be obtained directly from Laplace s Equation

by the aid of Green s Theorem
(v. Peirce s Newt. Pot. Func. 48).

Take the special form of Green s Theorem [(148) 48 Peirce s Newt.. Pot.

Func.]

fff(VV
2 V- VV2

U}dxdydz
=J&quot;(

UDn V- VDn U)ds (1)

where V2 stands for (D + D* + Z&amp;gt;2
2

),
Dn is the partial derivative along the

external normal, and the left-hand member is the space-integral through the

space bounded by any closed surface, and the right-hand member is the surface

integral taken over the same surface,
(v.

Int. Cal. Chapter XIV.)
If 7 and Fare solutions of Laplace s Equation V2F=V 2 7=0 and (1)

reduces to

(UDnV- VDn U)ds = .

(2)f
Now rmj m and rnXn are solutions of Laplace s Equation if x cos

(v.
Art. 16).

If the unit sphere is taken as the bounding surface and U=rmXm and

V=rnXn (1) and (2) will hold good.

DnU=

27T

and (2) becomes Cd$ C(nXmXn mXmXn) smO.dO

2ir(n m) CxmXn sin O.dB = .
(3)

or

o

Since x = cos 6
,
sin O.dO = dx and (3) reduces to

W
1

unless m= n.

93. We can now solve completely the problem of Art. 10 which was in

that article carried to the point where it was only necessary to develop a

certain function of in the form

* It should be noted that this proof is no more general than that of the last article, for, in

order that Green s Theorem should apply to rmXm ,
this function and its first derivatives must

be finite continuous and single-valued within and on the surface of the unit sphere, (v. Peirce,

Newt. Pot. Func. 48.)
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7T
given that

/(0)
= 1 from = to = -

and /(0)=0 from =
^ to O = TT.

This amounts to the same thing as developing F(x) into the series

F(x)
= A PQ(x) + A.P^x) + A,P2(x) + A3P,(x) +.

where ^X35
)
= from x = 1 to x =

and F(x)
= l from z = to aj = l.

By Art. 90 (1) and (2)

A= fPO(S)&amp;lt;&
=
2j

dx =
2

2m + 1 /*
and any coefficient Am = r I Pm(x)dx.

By Art. 91, Ex. 1

Pm(x)dx = if m is even

&quot;i^l 1 3.5.7. &quot;m . . ,,=
( 1)

2 __ ___ _ if m is odd.

m(m + 1) 2.4.6. (ra 1)

Hence Am= if m is even

^-^^Mi-;-;-- (-;) ifmisodd.

2w + 2 2.4.6. (m 1)

and u =
I
+

| rP^cos 0)
-
^4 ^^(cos 0) + ii.

^| ^P^cos 0) + - -

(2)

for any point within the sphere.

94. If in a problem on the Potential -Function the value of V is given at

every point of a spherical surface and has circular symmetry
* about a diameter

of that surface the value of V at any point in space can be obtained.

We have to solve Laplace s Equation in the form

, 2/r y\ _j_
_L_

&amp;gt;0(sin
ei)9 V) = (1)

sin Q

* See note on page 12.
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subject to the conditions

F=/(0) when r= a

V=Q r=oo.

We have /(0)
== APo(cos 0) + A^P^cos 0) + J2P2(cos 0) -\

where Am=^^ f/(0)Pm(cos 0) sin O.dB. v. Art. 90
(4).

Hence

V= 4 -f A l

(jj P^cos 0) -f J2
(-)

P2(cos 0) + J 3 /-
j
P3(cos 0)4 (2)

is the required solution for a point within the sphere, and

0) -f J 2
(^)

8p2(cos 0) 4- J 3 0)
4

A(cos 0) + -..
(3)

is the required solution for an external point.

EXAMPLES.

1. If on the surface of a sphere of radius c V is constant and equal to a

show that V=^a for any point within the sphere and V= for any

external point.

2. Two equal thin hemispherical shells of radius c placed together to form
a spherical surface are separated by a thin non-conducting layer. Charges of

statical electricity are placed on the two hemispheres one of which is then

found to be at potential a and the other .at potential b. Find the value of the

potential function at any point.

I-Q r ^ i s

-

P^COS 0)
- .

- - P3 (COS 0)

for an internal point

v= nr ;

for an external point.
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3. If F! =/(cos 0) when r= a and Vl
= when r b show that for

a &amp;lt; r &amp;lt; &

where An

4. If F2
=

.F(cos 0) when r = b and F2
= when r= a then for

where ^m

5. If the value of the potential function is given arbitrarily on the surfaces

of a spherical shell but has circular symmetry* about a diameter V= Fi + F2

(v.
Exs. 3 and 4).

6. Two concentric hollow spherical conductors are insulated and charged.

The inner one of radius a is at potential p, and the outer one of radius b is at

potential q. Find F for any point in space.

V=p if r&amp;lt;a,

b a\r / b a

= if r&amp;gt;b.

r

_ if a&amp;lt;r&amp;lt;b ,

7. If F=0 on the base of a hemisphere and F=/(cos0) on the convex

surface, show that for a point within the hemisphere

where A2k + l
=

(4A + 3) /()Ptt+1(a;)^ [v. Art. 90 (8)].

8. If the convex surface of a solid hemisphere of radius a is kept at the

constant temperature unity and the base at the constant temperature zero

show that after the permanent state of temperatures is set up the temperature

of any internal point is

* See note on pac:e 12.
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9. A sphere of radius a and with blackened surface is exposed to the direct

rays of the sun in air at the temperature zero. Find the stationary temperature

of any internal point.

Suggestion: Dru -J- hu Mf(6) = when r=.a.

Let u=^Am m̂Pm (&amp;lt;x&amp;gt;*$)&amp;gt;

and f(0)=^mPm(cos 6).

Then we have

4* Pm(cos 0) + h%AmPm (
Gos 0}

-M^SmPm (
Gos 6}

=
,

MBmwhence A =--

Here ffO) = cos if 0&amp;lt; &amp;lt; and /(0)
= if

A Zi

f(0)
=

1
+

1
pi(cos 0) +^ P2(cos 6)-j^

P4(cos 6) +

v. Art. 91 Exs. (2) and. (3). cf. J. W. Strutt (Lord Kayleigh), Loncl. Phil.

Trans, vol. 160, page 587.

95. The formulas of Art. 90 enable us to develop a given function of x in

terms of Zonal Surface Harmonics, the development holding true for values of

x between 1 and -\- 1. If, however, we can show by outside considerations

that a given function of x can be expressed in Zonal Surface Harmonics, the

development holding true for all values of x, the formulas of Art. 90 will give

us the development in question.

For example if n is a positive integer xn can be expressed in terms 6f Zonal

Surface Harmonics no matter what the value of x, and no Harmonic of higher
order than n will enter. For the formulas giving the values of PI(#), P2 (V),

Pn (x) (v.
Art. 77) may be regarded as n algebraic equations of the first degree

in terms of x, x2
,
x8

,
xn and PI(X), Pz (x)j &quot;-Pn (

x
)-

From these equations the n 1 quantities x, x
2
, x*, --xn~ l

,
can be elimi

nated, and there will result an equation of the first degree in x n and PI(X),
P2 (V), Pn (x), which will enable us to express xn in the form

A, + A^x) + A 2P2(x) + + A nPn (x) ,

no matter what the value of x, and we shall have the same formula when
1 &amp;lt; x &amp;lt; 1 as when x &amp;gt; 1 or x &amp;lt; 1.
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Let us obtain this development. By Art. 90 (1) and (2)

xn= A P (x) + AlP1 (x) + AzP,(x) + (1)

2m + 1 C
m&amp;gt; , \j ,&amp;lt;&amp;gt;\where Am= - xnPm(x)dx . (2)

By integration by parts we get

faj
rf&amp;lt;

&quot;^7
^dx = n(n-l)(n-2)--(n-m + l)xn~ m

(l
- x2

)
mdx

, (3)

-i -i
if m &amp;lt;C

n + 1
,

= if m &amp;gt; n.

By integration by parts we readily obtain the reduction formula

/.
ox , Q

/&quot;oP + 2/1 rr%\q l^/ y -wTlPTlPA
y,p

/I Xi^aX I * I -*- *^ ^^ WIlcIlLo

J9 -+
1

1

/*

1 ^

/ 2
I

+ mdx = :

-r-. if n + ^ is even
,

J 7i -f m + 1

= if n + m is odd.

, . (2m + l&amp;gt;(tt

-
l)(n

-
2)

-

(n
- m + 1)

m ~
(n m + 1) (n m + 3) (w

r/i + 5)
-

(w -f m + 1)

if m &amp;lt; ?i + 1 an(l Wi 4- w is even,

= if m &amp;gt; n or if m + n is odd.

Therefore

-
1!)

the second member ending with the term : P^,(a;)
if n is even and with

o n -\- L

the term
, Px(a;)

if n is odd-
7i ~p a
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For convenience of reference we write out a few powers of x.

179

128

6435

64
iLp^+^p/^+i

If a given function of x can be expressed as a terminating power series it can

be developed into a Zonal Harmonic Series by the aid of (4). Given that

f(x)
= ( t -f a^x + ^ 2 a

i2 + ^s^
3
H j

let /() = BQ + ^P^z) + tf,P8 (a:) + ^3P8 (x-) + ;

then picking out carefully the coefficient of Pm(x) we have

Bm =
1.3.5. -

(2m 1) 2. (2m + 3)

+
2.4. (2m + 3)(2m + 5)

I ]

dPn (x)

dx

96. The development of
-g-*

is useful and is easily obtained.

Let ^_^^ ^ P
(:r) + ^^(a;)

2m + 1 /i_ % dPjx]
Then

by Art. 90 (2);
i

dPm(

dx (2)



180 ZONAL HAKMONICS. [ART. 97.

[Pm()P.(*)] -0 if m + n is even
x= 1

= 2 if m + w&amp;gt; is odd.

dPJx) ,
is anSince Pn (x) is an algebraic polynomial of the nth degree in x,

CL*Ct

algebraic polynomial of the n 1st degree in x. Therefore in
(1) m is less

dPm(x) .

than M; consequently

than n and

is an algebraic polynomial in a; of lower degree

dPm (x]

dx

We get then Am = 2m + 1 if m -f n is odd and m&amp;lt;.n,

if in -f- n is even or in &amp;gt; n 1
;

dx n l\ \ n-3V

by Art. 95
(3).

and

&amp;gt;-.() + &amp;lt;)

the second member ending with the term 3Pi(x) if n is even and with the

term P (x)
if n is odd.

From (3) a number of simple formulas are readily obtained. For example

[T. (4) and Article 77 (12)].

(x
2 -

1)

[v. (5) and Article 91 (7).

= xPn(x)
-

(5)

(6)

(7)

97. By the aid of the formulas of Art. 96 a number of valuable develop

ments can be obtained.

Let us get cos nO and sin nO n being any positive real.

z cos nO and z= sin n& are solutions of the equation
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if we let x= cos 6, of the equation

dx

181

(1)

Let

s the required development of cos nO or of sin nO.

Then V am [ (1
- x2

)
*L*&) - x^M + n*Pm(x)1=0 by (1).

m=0 L J

2= Pm(x) is a solution of Legendre s Equation (v.
Art. 77). Hence

and (1) becomes

&quot;T r- dPm (x) -|

Formulas (4) and (6) of Art. 96 enable us to throw (2) into the form

I ft

dx
_ ri

2

(m + I)
2

&amp;lt;lP
ni _ 1 (x}-\ _

(3)

(3)
must be identically true. Therefore the coefficient of

m + 1 ^ must

equal zero, and we have

2m -f- 5 n2 m2
...

m + l n* (m-f S)
2 ^*

If we are developing cos nO

1 C
aQ
= -

I cos nB sin B.dB

o

ir

= -
j [sin (?i -f 1)^ sin (n

o

1 1 + COS 717T

by Art. 90 (4),

and ;os w^ cos sin 0.c?0

3 1 cos mr

by Art. 90 (4),

(6)
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(4), (5),
and (6) give us

COS n6= -

If ft is a whole number 1 -j- cos TITT or 1 cos WTT will vanish and the series

will end with the term involving Pw (cos 0). For this case (7) maybe rewritten

. 1 2.4.6.
cos nv= --

2 3.5.7.

If we are developing sin nO

1 r . 1 sin UTT
a = -

I sm nv sm B.dB = -
&amp;gt;

2j 2t n ~~~ 1
o

1
= ?

Jsin
n0 cos sin 0.rf0 =

|-^ and

sin = - 1.J^ [P (cos ) + 5^2 P,(co6 0)

If n is a whole number sin WTT =
,
and all the terms of (9) vanish except

those involving Pn _ 1 (cos 0), Pn + 1(cos 0), Pn+3(cos ff) &c., which become inde

terminate. For this case it is necessary to compute an _ 1 independently.
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We have

2n lr
an-i = n I

s ^n ^0-fn_i(cos 0) sin O.dO

o

7T

= -
I [cos (n 1)0 cos (n

Hence

and

EXAMPLES.
1. Show that

= ^ I 1 + 5
(-J

P2 (cos 0) 4- 9
(^-7J

P4(cos 0) -f 13

whence

[v. Art. 90 (4) and Art. 82].

2. Show that

whence

(D

[v. Art. 90 (4) and Art. 82].

3. By integrating the result of Ex. 1 and simplifying by the aid of Art. 96

(5), obtain the development

sin- x =
I [

3
(!)pl
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whence =
| |~Po(cos

0)
- 3

fflp^cos 0)
- 7 (^P

4. By integrating the result of Ex. 2 and simplifying by the aid of Art. 96

(5) obtain

whence

sin 8 =
|
Pi P (cos 0)

- 5 Q(|)
2

p2(cos 0)
- 9

(|)(j$P* (
cos *) J

To make clearer the analogy of development in Zonal Harmonic Series with

development in Fourier s Series we give on page 185 a cut representing the

first seven Surface Zonal Harmonics Pj(cos 6), P2(cos 0), -P7 (cos 0), which

are of course somewhat complicated Trigonometric curves resembling roughly

cos0, cos 20, cos70; and on page 186, the first four successive approxi

mations to the Zonal Harmonic Series

|
+|p1(cos(9)-|.|pa(co8(?)+i|.||p5(co8(9)-...

[i]

[v. (1)
Art. 93], and

| [PO(COS ff)
-3

(!) Pi(cos 0)
~ 7

(^^(cos 0)

(v.
Ex. 3 Art. 97).

[i] is equal to 1 from = to =
^

and to from =
^

to =
7r; and

[n] is equal to 6 from = to 6 &quot;-- TT .

The figures on page 186 are constructed on precisely the same principle as

those on pages 63 and 64, with which they should be carefully compared.

98. By applying Gauss s Theorem (B. 0. Peirce, Newt. Pot. Func. 31) or

the special Form of Green s Theorem,

C C TV2
Vdxdydz=&n Vds= - TT pdxdydz,
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o w

185
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\

v. page 184.
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[Peirce, N. P. F. 49 (149)] to a box cut from an infinitely thin shell of

attracting matter by a tube of force whose end is an element of the surface of

the shell we readily obtain the important result

irPK = Dn V,-Dn Vz .

(1)

where p is the density and K the thickness of the shell, V\ the value of the

potential function due to the shell at an internal point and V2 its value at an

external point, and where Dn is the partial derivative along the external normal

to the outer surface of the shell.

If we have to deal with a surface distribution of matter we have only to

replace pK in (1) by cr where or is the surface density, whence

4,7ro-= Dn Vl-Dn V2 (2)

(v. Peirce, K. P. F. 45, 46, and 47).

Formulas (1) and (2) enable us to solve problems in attraction when we

know the density of the attracting mass, and problems in Statical Electricity

when we know the distribution of the charge,by methods analogous to that of

Art. 94.

For example let us find the value of the potential function due to a thin

material spherical shell of density p and radius a.

Since V must be a solution of Laplace s Equation and must be finite both

when r= and r= oo we have

t and Vz must approach the same limiting values as r approaches a. Hence

or

Dn V, =Dr V, =

\v,

Therefore by (1)

A a2m+l
Dn Vz

= Dr Vz
=-(m + 1)

--
+ Pm(cos 0).

if K is the thickness of the shell.
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Let p =/(cos 0) =2} &amp;lt;7mPm(cos 0)

i

where Cm =
m
^~ Cf(x)Pm(x)dx by Art. 90 (2).

Then 4irKCm = (2m + l)Ama
m- 1

, and

47T/CCL , _ 4-7TK _-

and Fl= 4TOK -
*.( *) , (3)

99. We can now get the value of the potential function due to a spherical

shell of finite thickness, provided that its density can be expressed as a sum of

terms of the form O*Pm(cos 6).

Let a be the radius of the outer surface and b be the radius of the inner

surface of the shell.

1st. Let p= O*Pm(cos 6). Then for the shell of radius s and thickness ds

f&amp;lt;&amp;lt; rm

Fl =

and F2=4^5___Pm(cos ^ by (4) Art. 98.

Then if r &amp;lt; b

if r&amp;gt;a

(g
k+m + S

l&amp;gt;k

+ m +
3J PCT ^

COg

and if b&amp;lt;r&amp;lt;a

r a

-fFi
=

TO(cos 0) . (3)

2d. If p = C^P^cos 6} the solutions will consist of sums of terms of

the forms given in (1), (2), and (3).
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EXAMPLES.

1. If the shell is homogeneous

V=2Trp(a? b2
) if

r&amp;lt;b,

-= 77 I if b&amp;lt;r&amp;lt;a.

2. If the density is any given function of the distance from the centre

MV= if r&amp;gt;a, and V= a constant if r&amp;lt;b.

3. If the density at any point of a solid sphere is proportional to the square

of the distance from a diametral plane

if &amp;gt;

4. If the density at any point of a solid sphere is proportional to its distance

from a diametral plane

M\~a . 1 a3 _ 1.1 a5 _ 1.1.3 a7

V= +
6 P

P
*(
COS

*&amp;gt;

-
63 ;&amp;gt;

~|
S e

&amp;gt;

~
J

if r&amp;gt; a. Compare Ex. 2 Art. 80.

100. We have seen in Art. 18
(c) (3) that

gro(.)
= CPCT(.)/(1_^(a)]i

, (1)

no constant term being understood with
j

-
.

^
,/ (1 a ^L-^wC^/J

is a rational fraction and becomes infinite only for x = 1,
(1

# /[*(*/J

x = 1, and for the roots of P
OT (ar)

= 0, all of which are real and lie

between 1 and 1, as can be proved by the aid of the relation

P ,&=
2mm\ dxm

If x2
&amp;gt; 1 I
- is finite and determinate and contains no

constant term. Hence if cc
2

&amp;gt; 1

for the constant factor of a has been chosen so that C= 1 .
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If x2
&amp;lt; 1 the second member of (2) is not finite and determinate, and we

are thrown back to the form (1), and C proves to be unity.

(1) gives us readily

Qo(*)
= log- (3)

if z2
&amp;lt;l.

(2) gives us Q (x)
=

\ log|i

if &amp;gt;!.

From Art. 85 (10) it follows that

if a?

_
(7 can be determined and is equal to *-

(2m)\
- ^ ^^ *

/_
I)m 2

mm l

t0
-(4)!-

lf ^^
( I}

m + I 2mml dm r, _ c dx 1
Hence QJ*) = L-J^ ^ [^

&quot;

1}

/(^Ip-&quot;
1J

if z2
&amp;lt;l,

( l
and Qm(x) = (

(

if x*&amp;gt;l.

(7) and (8) give us for Q (x) and ^(sc) the values already written in (3),

(4), (5),
and (6).

By the repeated application of the formula

(m + 1) Qm+l(x)
-

(2m + X)xQm(x) + mQm^(x) = , (9)

which may be obtained for the case where z2
&amp;lt; 1 from Art. 16 (13) and (14),

and for the case where x* &amp;gt; 1 from Art. 16 (9), any Surface Zonal Harmonic

of the Second Kind can be obtained from Q (x)
and Qi(x) as given in

(3), (4),

(5), and (6).
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Analogous, formulas for pm(x) and qm(x) can be obtained without difficulty

from Art. 16 (4) and (5). They are

(m + l)*qm+l(x)
- (2m+ l)xpm(x)

- m*qm_Jx) = (10)

and Pn+ ,(x) + (2m + 1) xqm(x) -p^x)= (11)

and they hold good for any value of m.

EXAMPLES.

1. Confirm the values of Q (x) and Q{(x) given in Art. 100 (3), (4), (5), and

(6) by expanding them and comparing them with Art. 16 (13), (14), and (9).

2. If the value of V on the surface of a cone of revolution can be expressed

in terms of whole powers positive or negative of r, V can be found for any

point in space, cf. Art. 81.

If r-jr--f when = a then

3. If F=A/m+ -ri when 6= a, and F=0 when = 0,

4. Find V for points corresponding to values of 6 between a and ft when

V can be given in terms of whole powers of r for 6= a and for =
ft.

5. Find by the method of Art. 16 solutions of Legendre s Equation of the

form

.
tr IN

|

(m-l)m(m + l)(wt + 2K 1V
22

(2 !)
2

28

(3!)
2

(m - 2)(m
- l)m(m + l)(m + 2)(m + 3)

T&quot;

28

(3!)
2

If m is a whole number, lPm(x) = Pm(x) and ^P^a) = ( l)
mPm(x). No

matter what the value of m, iPTO(#) is absolutely convergent for 1 &amp;lt; x &amp;lt; 3 ,

and _iPTO(#) is absolutely convergent for 3 &amp;lt; x &amp;lt; 1 .
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6. By the aid of (7) Art. 16 show that

F= -r- sin (n log r)kn (cos 0) ,

Vr

F= -= cos (n log r)kn (cos 0) ,

are solutions of Laplace s Equation

rDr\rV) + --

1
V -^ sin (n log r)ln(Goa 0) ,

F= -=. cos (n log r)ln(cos 0) ,

if

*) =*-*+-&amp;lt;*)
= i + + x*

and

+
3! 5!

7!

,(.r)
and ln (x) are convergent if ce

2
&amp;lt; 1, but are divergent if se

a= 1.

7. Show by the aid of Example 5 that

F= -r= sin (^ log r)7fw (cos ^)

F= -i cos
(TI log r)Kn (cos 0)

1F=
-j=.

sin (w log r)Kn (
cos ^),

F= -p cos (n log r)Kn ( cos d) ,

are solutions of rJ)r\r F) + -7^ De(sinsin (/

if

[_

7i2+(2 / JL
712

&quot;^^ _. _
2 2

(2!)
2

28

(3!)
1
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and

&quot;+-
(x

.

7fn (cos 0) is convergent except for 6 = TT, and 7if
ra (

cos 0) is convergent

except for = 0.

kn (x), ln (x),
Kn (x), and Kn ( x) are sometimes called Conal Harmonics.

They are particular values of z which satisfy Legendre s Equation written in

the form

For an elaborate treatment of them see E. W. Hobson on &quot;A Class of Spherical

Harmonics of Complex Degree.&quot; Trans. Camb. Phil. Soc., Vol. XIV.

8. If V=f(r) when B= P,

cos[a(x
~ 10^ if

9. If V=f(r) when =
(3 and r&amp;lt;a, and F=0 when r= a,

10. If F=/(r) when =
^8 and a &amp;lt; r &amp;lt; b, and F= when r == a

and when r= b,

V^A ^M (COS 0) rm7r(logr log a) &quot;I

^~^ m
^-(coS)8)

Sin
L log 6- log a JMl

where m = --^- and
log b log a

1
.

log b log a ^rj
y

log b log a
dx

;
if
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11. If $ &amp;gt; ft cose must be replaced by (- cos 0) in examples 8, 9, and 10.

12. If V=f(r) when 6= 0, and F=0 when = y ,

C&amp;lt;J\ C - ff*X\ ^afcOS 0)4~
irtfj

dK
J C *f(e }

*.(cos /3)4

if
fi&amp;lt;0&amp;lt;y.

13. If F=/(r) when = and
a&amp;lt;r&amp;lt;6, F=0 when ^= y and

j
and F= when r=.a and when r= b,

s y) ^.(cos y) a.fcos g) . m7r(log r log q)
s 7)

- 7̂
(
cos r)^ (cos ^)

S1

log 6 - log a

where =. =^1 and
log o log a

mirx
Sm

log b- log a r
-

Sm
log i- log a

S

it
/3&amp;lt;0&amp;lt;y

and a&amp;lt;r&amp;lt;b.

14. If F=/(r) when ^= ^ and
&amp;lt;/&amp;lt;*, and F=0 when r= a

and Z&amp;gt;rF+AF=0 when r= 5,

a (COS ff) r
.

sin a- log where

-
log a) + AA[W(log & - log a)

Sm

and am is a root of the equation

a cos a log
-
J
+ AJ sin

^a log
-
j
= v. Art. 68 Ex. 5.



CHAPTER VI.

SPHERICAL HARMONICS.

101. When we are dealing with problems in finding the potential function

due to forces which have not circular symmetry
* about an axis and are using

Spherical Coordinates, we have to solve Laplace s Equation in the form

)+De (
SmODe V) + D*V=() (1)

[v. (xin) Art. 1].

To get a particular solution of (1) we shall assume as usual that V is a

product of functions each of which involves but a single variable.

Let V=R.&
,
where R involves r only, involves only, and &amp;lt;

&amp;lt; only.

Substitute in (1) and we get

r sin2

d\rR) sin
d

R dr2 dO

As the first member does not contain &amp;lt; the second member cannot contain

&amp;lt;,
and as it contains no other variable it must be constant; call it n2

. Equa
tion (2) is then equivalent to the two equations

+____ =0R dr2 r
sin0 dO sin2 ^

(3) has been solved before and gives us

&amp;lt;$
= A cos

n&amp;lt;f&amp;gt;
-\- B sin

n(f&amp;gt; (5)

[v. Art. 13(a)].

The first term of (4) does not involve and the second and third terms do

not involve r.

* See note, page 12.
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-^ --^-r- must, then, be a constant; we shall call it m(m-fl) as in Art.

13
(c).

Then (4) breaks up into

dr*

^sin^l

(6) was solved in Art. 13 (c)
and gives

X = A l i +

If in (7) we replace cos by p we get

the equivalent of

[v. (17) Art. 85], which was solved in Art. 85 for the case where m and n are

positive integers and n &amp;lt; m + 1. v. (18) and (19) Art. 85.

From (19) Art. 85 we get as a particular solution of (9)

if we restrict ourselves to whole positive values of wand n, as we shall do

hereafter unless the contrary is explicitly stated, and suppose m not less

than n.

A second but less useful particular solution of (9)
is

Combining our results we have as important particular solutions of (1)

&amp;gt;V= rm(A cos
n&amp;lt;j&amp;gt; + B sin nj) sin&quot;

and V= -jL (A cos
n&amp;lt;j&amp;gt;
+ 3 sin

7i&amp;lt;)
sin&quot; d

&quot;^
&amp;gt; (

13)

where m and ?i are positive integers and &amp;lt; m+ 1.
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- is a new function of
//-,

that is102. sin ra 6 or (1 p?)l

of cos 6
}
and we shall represent it by P,(ft)* and shall call it an associated

function of the nth order and ?&amp;gt;ith degree. It is a value of satisfying

equation (9) Art 101.

By differentiating the value of Pm(x) given in (9) Art. 74 we get the formula

Py^- (2&quot;0!Bing F (m
-

n}(m -n- 1) _ 2
-r

&quot;W 2-m! (ra n) ! [_/ 2.(2ra
-

1)

(ra tt)(m n l)(m ?t 2)(ra n 3) m_ n _ 4 _
2.4. (2m -1) (2m -3)

the expression in the parenthesis ending with the term involving /A if m n is

even and with the term involving p if m n is odd.

For convenience of reference we give on the next page a table from which

P?(At) can be readily obtained for values of m and n from 1 to 8.

cos
n&amp;lt;^P^(fi)

and sin
n&amp;lt;f&amp;gt;

Pn?(/Lt),
that is,

cos sinn &quot;^ and sin TI&amp;lt;/&amp;gt; sin&quot; T

&quot;

are called Tesseral Harmonics of the rath degree and nth order, and are

values of V which satisfy the equation

or its equivalent

(2)

(3)

There are obviously 2ra -f 1 Tesseral Harmonics of the rath degree, namely

sin
&amp;lt;/&amp;gt;

sin

sin 2&amp;lt; sin2

sin

sncos

If each of these is multiplied by a constant and their sum taken, this sum
is called a Surface Spherical Harmonic of the rath degree, and is a solution of

equations (2) and
(3). We shall represent it by Ym(p, &amp;lt;j&amp;gt;)

or by Ym (8, &amp;lt;).

Most of the English writers represent this function by



198 SPHERICAL HARMONICS. [ART. 102.

Table for
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n = 4.
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the parenthesis ending with a term involving x if m n is even and x if

m n is odd, is a solution of the first equation of Ex. 1. If m and n are

integers this value of z is - ^ . P(x) .

(jjYfl)
\

103. We have seen in the last chapter that in many problems it is import
ant to be able to express a given function of cos 6, that is of

/JL,
in terms of

Zonal Harmonics of
JJL.

So it is often desirable to express a given function of

p, and &amp;lt;f&amp;gt;

in terms of Tesseral Harmonics of p and &amp;lt;.

If, for example, we are trying to find the Potential Function due to certain

forces and have the value of the function given for some given value of r,

that is, on the surface of some given sphere whose centre is at the origin of

coordinates, of course the given value will be a function of 6 and &amp;lt; and if we

can express it in terms of Spherical Harmonics of and &amp;lt; we have only to

multiply each term by the proper power of r to get the required solution of

the problem. For we shall then have a value of V satisfying Laplace s

Equation and reducing to the given function of and &amp;lt; on the surface of the

given sphere.

104. Suppose that we have a function of fi and &amp;lt; given for all points on

the unit sphere, that is, for all values of
JJL
from 1 to 1 and for all values of

&amp;lt;j&amp;gt;

from to 2-7T, /* and
&amp;lt;f&amp;gt; being independent variables, and that we wish to

express it in terms of Surface Spherical Harmonics.

Assume that

sn w*p
(/*&amp;gt;)J

Let us consider first a finite case, and attempt to determine the coefficients

so that

m=p

*(ti)J

shall hold good at as many points of the sphere as possible. The expression

in brackets in the second member of (2) is a Surface Spherical Harmonic of

the mth degree and contains 2m -j- 1 constant coefficients. The whole number

of coefficients to be determined is then the sum of an Arithmetical Progression

of J9-J-1 terms the first term of which is 1 and the last is 2p + l, and is

therefore equal to (p + I)
2
-

Let the interval from /*
=

lto/&amp;lt;i
= lbe divided into p + 2 parts each of

which is A/I so that (p + 2)A/u
= 2, and let the interval from

&amp;lt;j&amp;gt;

= to
&amp;lt;f&amp;gt;=

2?r

be divided into p + 2 parts each of which is A&amp;lt; so that (p + 2)A&amp;lt;

= 2?r.
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Then if we substitute in equation (2) in turn the values
(

1 -}- A/*,
- -

[- 1 + (p + l)A/z, A|; (- 1 + A

[_ 1 + (p + 1)A/*, 2A*]; [- 1 + A/z, (p
[- 1 + 2A/&,

(/&amp;gt;
+ 1)A), [- 1 + (p + 1)A/*, (p + 1)A|; since the first

member in each case will be known we shall have (p -f I)
2
equations of the

first degree containing no unknown except the (p + I)
2
coefficients, and from

them the coefficients can be determined. When they are substituted in equa
tion (2) it will hold good at the (p + I)

2
points of the unit sphere where p-\-l

circles of latitude whose planes are equidistant intersect p-\-l meridians

which divide the equator into equal arcs. If now p is indefinitely increased

the limiting values of the coefficients will be the coefficients in equation (1),

and (1) will hold good all over the surface of the unit sphere.
To determine any particular constant we multiply each of our (p + 1)

2

equations by Aft A&amp;lt; times the coefficient of the constant in question in that

equation and add the equations and then investigate the limiting form

approached by the resulting equation as p is indefinitely increased.

As p is indefinitely increased the summation in question will approach an

integration; and since d^d^ = sin O.dO
dcf&amp;gt;

is the element of surface of the

unit sphere, and as the limits 1 and 1 of /* correspond to TT and of 6 the

integration is a surface integration over the surface of the unit sphere.
In determining any coefficient as An ^m in (1) the first member of the limiting

form of our resulting equation will be

!*, &amp;lt;)

COS

In the second member we shall come across terms of the forms

2T 1 27T1
(* f* f* f*
I

d&amp;lt;}&amp;gt;

I sin
l&amp;lt;f&amp;gt;

cos
n&amp;lt;^&amp;gt; P^f/jLjP^f/jLjdfjL, j d&amp;lt;f&amp;gt;

I cos
l&amp;lt;f&amp;gt;

cos
J J J J01 0-1

2r 1 2n- 1

oi oi
and other terms all of which come under the form

2* i

where Ym(p, &amp;lt;)

and rj(/t, &amp;lt;)

are Surface Spherical Harmonics of different

degrees.

If we are determining a coefficient Bnm the only difference is that sin
n&amp;lt;f&amp;gt;

and cos
n&amp;lt;f&amp;gt;

will be interchanged in the forms just specified.
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105. The integral over the surface of the unit sphere of the product of two

Surface Spherical Harmonics of different degrees is zero.

2rr 1

//*d&amp;lt;f&amp;gt;

I
Y^JJL, &amp;lt;j&amp;gt;)

Ym (}JL, &amp;lt;f&amp;gt;)d(ji

= Q. (1)

X
For as we have seen U=?J Y

l (fji, &amp;lt;f&amp;gt;)

and V= rmYm(n, &amp;lt;f&amp;gt;)

are solutions of

Laplace s Equation. Hence by Green s Theorem

C(UDn V VDn U)ds= v. Art. 92.

UDnV- VDnU= (m
- iy+~* Y&, *) Ym(pt

&amp;lt;#&amp;gt;),

= (m

on the surface of the unit sphere ;
and

2ir

(m
-

Oj,(/*,
&amp;lt;^&amp;gt;)

rm (/*, fids
= (m

-
I)

Hence unless I= m
2rr 1

1

EXAMPLES.

1. Obtain (1) Art. 105 directly from the equation

m(m -j- 1) J

v. (3) Art. 102, and Art. 91.

2. Show that the integral over the surface of the unit sphere of the product

of two Tesseral Harmonics of the same degree but of different orders is zero.

Suggestion:

/sin
kd&amp;gt; cos

ld&amp;gt;.d&amp;lt;j&amp;gt;

= Tsin
k&amp;lt;j&amp;gt;

sin
l&amp;lt;f&amp;gt;.d&amp;lt;j&amp;gt;

= (cos k$ cos

/ s
1

i

106 C.Pid^Pmd^dp == ^ unless l= m
A

2 (m + ri)\
if I-

2m + I (m n) !
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For

-1

&amp;lt;*/*&quot; d/t
1

by integration by parts.

Replacing w by rc 1 in equation (2) Art. 84 and remembering that

&quot;

n
is a possible value of s:

(n~ 1) we get

or if we multiply by (1

(m = 0,

or

Hence follows the reduction formula

Using this formula w times we get

= unless l=
2 (HI -f n) ! .

v. Art. 89 (4) and (5).

2m + 1 (i n) !

if
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107. We are now able to complete the solution of the problem in Art. 104

2ff 2* 2ir

and since Tcos2
n&amp;lt;f&amp;gt;.d&amp;lt;f&amp;gt;

= Tsin2
n&amp;lt;f&amp;gt;.d&amp;lt;}&amp;gt;

= TT and
Cd&amp;lt;f&amp;gt;

= 2-7T we get as the

coefficients in (1)
Art. 104

o
sn -

whence
TM=OO n=m

cos w&amp;lt;&amp;gt; + s - snin n*)p WJ

and the development holds good for all values of p and &amp;lt; corresponding to

points on the unit sphere, provided only that the given function satisfies the

conditions that would have to be satisfied if it were to be developed into a

Fourier s Series.

If we use ^j and fa in place of ft and &amp;lt;#&amp;gt;

in
(1), (2), and (3),

we can write (4)

in the form

COS w(*
~

Formulas (1), (2), (3),
and (4) are convenient for actual work; (5) is rather

more compactly written.

108. As an example let us express sin2 cos2 sin
&amp;lt;f&amp;gt;

cos
&amp;lt;j&amp;gt;

in terms of

Surface Spherical Harmonics.

Here f(u, &amp;lt;f&amp;gt;)

=
/*

a
(l

~~
/**)

s^n 2&amp;lt;

v z
1 in

, I sin
2&amp;lt;f&amp;gt;.dd&amp;gt;

=
,

J
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2n,m
= 2m + 1 (m ri)l

4?r (m+ n) !

i I sin 2&amp;lt; sin
n&amp;lt;j&amp;gt;.d&amp;lt;f&amp;gt; ,

/

= unless n = 2 .

If n= 2
J
sin 2&amp;lt; sin

n&amp;lt;f&amp;gt;.d&amp;lt;f&amp;gt;

=
|

sisin
2&amp;lt;j&amp;gt;

sin
n&amp;lt;f&amp;gt;.d&amp;lt;f&amp;gt;

=
|
sin2

2^&amp;gt;.c?^&amp;gt;

=
TT, and

-M=
2m + l (m 2)!

4 (m

2-m! 4 rf/*.

by repeated integration by parts,
= if m&amp;gt;4,

= 7201 (V-

192! 4096 _ 1

6! 7 ~105

By a like process we find

.#28 = and 2?2,2
= TO2,8

sin2 cos2 6 sin &amp;lt; cos
&amp;lt;#&amp;gt;

=
TJ ^(A

1
) sin

2&amp;lt;f&amp;gt; + P4
2

^) si

if w= 4,

Hence

(1)

= - sin2 ^ sin sn sn (3)

The required expression might have been obtained without using the

formulas of Art. 107, by a very simple device, as follows :

(4)sin2 cos2 sin &amp;lt; cos
&amp;lt;f&amp;gt;

= = n* sin2 sin
2&amp;lt;f&amp;gt;
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If now we can express /u
2 in the form

, JL
** ~4.3

[ART. 109.

wor^ w^ be done.

8

35

4.

r
7

o *\i/ i

whence /*
=

-r^rz j-\
r QI

and substituting this value in (4) we get (2).

EXAMPLES.

1. Show that

cos8 sin8 6 sin &amp;lt;i cos 2
d&amp;gt;

=

2. Show that

cos 2d&amp;gt;
= 2 cos

2&amp;lt;/&amp;gt; | T-.

at an internal point and

cos

cos

sn

3. If in a problem on the Potential Function F=
shall obviously have

when r= a we

^)
J

sn

at an external point, where A
&amp;gt;m

,
Jn ,m ,

and 5
n&amp;gt;m

have the values given in
(1),

(2),
and (3)

Art. 107.

4. Solve problems (3), (4),
and (5) of Art..94 for the case where Vis not

symmetrical with respect to an axis.

109. Any Solid Spherical Harmonic rmYm (n,&amp;lt;f) being a value of V that

satisfies Laplace s Equation in Spherical Coordinates will transform into a

function of x, y, and satisfying V2F= if we change to a set of rectangular
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axes having the same origin and the same axis of JTas the polar system.
Moreover the new function will be a homogeneous rational integral Algebraic
function of x, y, z, of the rath degree.

For each term of rm cos nPjC is of the form

Crm cosn
~ 2k

&amp;lt;J&amp;gt;

sin2
*^ sin&quot; Gosm

- 2l~ n

where 2k&amp;lt;n + l and 2l&amp;lt;m n + l.

This may be written

Cr21
. rm

- 2l-cosm- 2l- n
0. rM

- 2*smn- 2*0cos*- 2fc
&amp;lt;. r2* sin 2k

sin2*
&amp;lt;

which becomes C(x
2
-f y* -f zz

)
1 xm - 2l~ n

if- z2k
&amp;gt;

and is a homogeneous rational integral Algebraic function of x, y, and z of the

rath degree. The same thing may be shown of each term of rm sin
n&amp;lt;J&amp;gt;P(/jL).

Consequently rFm (/z, &amp;lt;)

is a homogeneous rational integral Algebraic func

tion of the rath degree in x, y, and z.

110. Any homogeneous rational integral Algebraic function Sm (x, y, z) of

the rath degree in x, y, and 2, which is a value of V satisfying V2F= con

tains 2m -f- 1 arbitrary constant coefficients.

For Sm (x, y, z) will in general consist of ^ - terms and will

, , . , . (m + !)(/ + 2) .
.

therefore contain -1- - - coefficients.

\7 2Sm (x, y, z) will be homogeneous of the
(ra 2)d degree and will contain

^----
coefficients, which, of course, will be functions of the coefficients in

Sm (x, y, z). Since V2
m(, y, )

= independently of the numerical values

of x, y, and z the -
coefficients in V 2

m (#, y, z) must be separately

zero, and that fact will give us ^ v equations of condition between the

(m+l)(ra-f 2) . .
/

^- ^-! -
original coefficients and will leave ^ --22

or 2?n + 1 of them undetermined. Sm (x, y, z) contains, then, the same number
of arbitrary coefficients as rm Ym (iJ,,&amp;lt;f&amp;gt;).

We can then choose the coefficients in rm Ym (fj,} &amp;lt;)
so that it will transform

into any given Sm(x, y, z).

Consequently a Solid Spherical Harmonic of the rath degree might be

denned as a homogeneous rational inter/rat Algebraic function of x, y, and z,

$m (
x

&amp;gt; y&amp;gt; *)&amp;gt; f tfie mth degree satisfying the equation \/*Sm (x, y,z)=Q; and a

Surface Spherical Harmonic of the rath degree as such a function divided by
that is by r&quot;

1
.
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EXAMPLES.

1. Show that if Sm (x, y, z) is a Solid Spherical Harmonic of the mth degree

x, y, z)~]
= n(2m + n+ l)r-*Sm (x, y, z).

Suggestion :

2. Show that if fn(x, y, z) is a rational integral homogeneous function of x,

y, and z of the nth degree it can be expressed in the form

fn (x, y, z)
= Sn (x, y, z) + r*Sn _ 2(x, y, z) + i*Sn_ 4(x, y, z) + -

, (1)

terminating with rn
~ lSl (x, y, z) if n is odd, and with rnS

(x, y, z) if n is even.

Suggestion: If a term r/Sn _j were present in the second member of
(1),

and

we were to operate with V 2 on both members we should by Ex. 1 have a term

n _i which would be irrational when all the other terms of the resulting

equation were rational. No such term, then, could occur. In the same way
it may be shown by operating twice on (1) with V 2 that there can be no term

rsSn _ 3
in (1); and thus step by step we can reach the result formulated in

(1).

3. Express x2

yz in the form /S4 + rzSz -\- r*SQ .

Suggestion: let x*yz 4 +
and take V2 of both members we get

Operate again with V2
.

= 120 . Whence

y*, and S^

4. Express sin2 cos 2 sin &amp;lt; cos &amp;lt; in terms of Surface Spherical Harmonics.

Suggestion : sin2 cos 2 & sin
&amp;lt;f&amp;gt;

cos &amp;lt;

=
j-

For result v. Art. 108 (3).

111. A transformation of coordinates to a new set of axes having the same

origin as the old set will change a given Surface Spherical Harmonic into

another of the same degree. For such a transformation does not change the

form of Laplace s Equation V 2T=0 if both sets of axes are rectangular,

and it is effected by replacing x, y, and z in the Solid Harmonic correspond

ing to the given Surface Harmonic by x cos ax + y cos a2 + z cos a8 ,

x cos ft + y cos /32 + z cosySg, and x cos yt -f- y cos y2 + z cos y3 respectively,

where the cosines are the direction cosines of the new axes, and it will leave
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the function a homogeneous function of the rath degree in the new variables,

and on dividing this by the rath power of the unchanged radius vector we shall

have a Surface Spherical Harmonic of the rath degree.

112. We have seen in Art. 75 that if (xlf y 1;&amp;gt; %) are the coordinates of a

given point

F= * = (1)

V(3
-

x,Y+ (y- yO
2+ (z

-
ztf

is a solution of Laplace s Equation V2 F=0, and transforming to spherical

coordinates that

(2),

V/r
2 2n-1[cos cos 6l + sin sin 1 cos

(&amp;lt; fa)] + r*

is a solution of

rD (r F) + 2*(sin 6A F) + ItfF= . (3)

If y is the angle between the radii vectores r and r^ of the points (a*, y, 2)

and (x1? 2/!, z-^) (1) can be written

~~

which must be equivalent to
(2),

and hence

cos y
= cos cos 0^ -f- sin ^ sin X cos

(&amp;lt;^ ^^ .

(4) which is a solution of (3) is of the same form as (5) Art. 75 and by

developing it as we developed (5) Art. 75 we find that

F=
is a solution of the equation

__l_
A(s i

and that V rmPm(cos y) and F= ^ Pm(cos y)

are solutions of (3).

If we transform our coordinates keeping the origin unchanged and taking as

our new polar axis the radius vector of (xlt ylt %) y becomes our new 6 and

P^cos y) reduces to P^cos 0) ,
a Surface Zonal Harmonic, or a Legendrian,* of

the rath degree. It is then a Legendrian having for its axis not the original

polar axis but the radius vector of (xit yi, z-^). Since a Legendrian is a Sur

face Spherical Harmonic,

Pm(cos y)
= Pm[cos cos 0! + sin sin Ol cos

(&amp;lt; fa)]

is a Surface Spherical Harmonic of the rath degree.

* v. Art. 74.
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It is, however, of very special form, since being a determinate function of

fji, (f&amp;gt;, fjL lf
and

&amp;lt;i
it contains but two arbitrary constants if we regard it as a

function of yu and &amp;lt;,

instead of containing 2m + 1.

It is known as a Laplace s Coefficient, or briefly as a Laplacian, of the mth

degree.

We shall soon express it in the regulation form of a Surface Spherical

Harmonic.

The radius vector of (xlf ylt i)
is called the axis of the Laplacian and the

point where the axis cuts the surface of the unit sphere is the pole of the

Laplacian.

We shall represent the Laplacian Pm(cos y) by Lm(p, &amp;lt;/&amp;gt;, /* 1? &amp;lt;i).
Of course

Lm(p, &amp;lt;M&amp;gt; 4&amp;gt;i)

= pmW = pm (
GOS *) and is really ^dependent of &amp;lt;.

113. If the product of a Surface Spherical Harmonic of the mth degree by a

Laplacian of the same degree is integrated over the surface of the unit sphere, the

result is equal to-^ multiplied by the value of the Spherical Harmonic at

2m + 1

the pole of the Laplacian.

That is,

Transform to the axis of the Laplacian as a new polar axis, and let Zm(p, &amp;lt;)

be the transformed Spherical Harmonic. Lm(p, &amp;lt;#&amp;gt;, A*I, &amp;lt;fc)

will become Pm (/i),

and (1) will be proved if we can show that

sn

(v. (5)
Art. 102).

and

Art
*)J

But Zm (l, 0)
= J

,
since Pm(l)

= 1 and P,(l) contains (1
-

1)J as a factor

and is equal to zero.

Hpnee (2) is proved.
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114. We can now express a Laplacian in the regulation form as a Spherical

Harmonic, by the formulas of Art. 107.

Lm (ji, &amp;lt;/&amp;gt;, /*!, 4&amp;gt;0

= Pm(coa y)
= P

OT[cos 6 cos Ol -f sin sin B l cos
(&amp;lt;

-

cos ** -*
sn

n=l

-
2rr

where

sin b x Art -

and AQJ
= ^4

Kti
.

= Bnk= by Art. 105 unless k= m. Hence

- * - (i)

Each term of a Laplacian involves a numerical coefficient, a factor which is

a function of /*, a second factor which is the same function of /AJ, and a third

factor which is of the form cos
/r(&amp;lt; &amp;lt;j).

We give on the next page a table

of the first few Laplacians,taken from Minchin s Statics, omitting in each term

for the sake of brevity the function of
IJL I

.

By the aid of (1) we can write (5) Art. 107 more compactly. It becomes

r=

m-O 1

&quot;= 2ir rr

f
^J/0*!, 4&amp;gt;i)mO&amp;gt; &amp;lt;k Mi, *i)*Ah (2)

ir rr

or , &amp;lt;#,)= ^ (2m+ 1) V&amp;gt;(015 ^)Pm (oos y) sin ^^. (3)
m=0



212 SPHERICAL HARMONICS. [ART. 114.

- a.

coico

I

o
I

I I

HS
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EXAMPLE.

Work the problems of Art. 108 and Art. 108 Exs. 1 and 2 by the aid of (3)

Art. 114.

115. Such problems as we have handled in Arts. 98 and 99, and also prob
lems differing from them in not having circular symmetry about an axis, can

now be solved by direct integration.

For instance let it be required to find the value at an external point of the

potential function due to the attraction of a solid sphere whose density at any

point is proportional to the product of any power of the radius vector by a

Surface Spherical Harmonic.

Let p=Cr{Ym (f
ji
1J ^.

Then using our ordinary notation we have

= Cdr, frffc
C^t^^^rfd

1? tf _&quot;(
W ZrriCoay + r

______ = -
[~Vo(COS y) -f

- P^COS y)2_ 2rriCosy+r1

2 r[_
r

r

if r&amp;gt;rlt

Consequently since

27T 1

= 0,

V reduces to the single term

by Art. 113.
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EXAMPLES.

1. Solve by direct integration the problems worked in Arts.- 98 and 99 and

Examples 1, 2, 3, and 4 of Art. 99.

2. The density of a solid sphere is proportional to the product of the

squares of the distances from two mutually perpendicular diametral planes j

find the value of the potential function at an external point.

Ans. p = krf cos2
0! sin2 6l cos

2
&amp;lt;f&amp;gt;

t

i P2 (Ml) +1 cos

- cos

3. Solve Example 2 by an extension of the method of Arts. 98 and 99.

4. A conducting sphere of radius a connected with the ground by a wire is

placed in the field of force due to an electrified point at which m units of

electricity are concentrated. Find the value of the potential function due to

the induced charge.

Suggestion: Let FI be the potential function due to the point, and Vz that

due to the induced charge, and let b be the distance of the point from the

centre of the sphere. Then

1
~~

)/l&amp;gt;*
2br cos B 4-T

2

if r&amp;lt;b.

if r&amp;gt;b.

- if r&amp;lt;a.

-- if r&amp;gt;a.

When r= a V1+V9
= Q. Hence

m ma
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and
^ r- M *& ~i

if r&amp;lt;a

if r&amp;gt;a.

Hence the effect of the induced charge is precisely the same at an external

point as if the sphere were replaced by units of negative electricity con

centrated at the point r=
,
6 = . v. Peirce, Newt. Pot. Func., 66.

116. If the two points P and P are taken on the line OH whose direction

cosines are A, /JL,
and v, and if u and u are the values at P and P of any con

tinuous function of the space coordinates, then . is called the

partial derivative of u along the line OH and will be represented by Dhu.

Let X) y, z be the coordinates of P and x -\- Ax, y + Ay, z -f- A the coordinates

of P
;
then

where is an infinitesimal of higher order than the first if AJC, Ay, and A are

infinitesimal (v.
Dif. Gal. Art. 198).

u} u _ Ace
,

_ Ay A*
Hence -^^-= Dx w. -j^ + Z&amp;gt;y w.^ + Dz u.

J

Therefore Aw= XD,w -f /-t
J&amp;gt;

yw + vZ&amp;gt;2u .

(1)

If V2^= 0, DD$Du is a solution of Laplace s Equation,

For \f\DDD;u) = D*D*DZ(V2
M)
= .

Hence if V2^= Z&amp;gt;Au is a solution of Laplace s Equation, and if OHly

OH2, OHS,

&quot; are a set of lines through the origin Dhl
D

hz
Dh

^&quot;u
is a solution

of Laplace s Equation.

117. If Hk is a rational integral homogeneous Algebraic function of x, y,

and z of the kth degree

JT
and is of the form
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/ J-T \ / TT \
The same thing can be proved of Dy (j*) and Dz I f\ and therefore holds

(TT

\ \lf \ I

77-
If u is a homogeneous function of x

y y, and z of the degree m 1 and

V2w = then V2

(r
}m+1

^)
= 0.

W&quot;
+ 1

u) = (2m+ 1)(2m + 2)r*&quot;-

x
1*

-f 2(2m+ I)?-
8

^ajZ^M -f 2/Z&amp;gt;y
w + zD,

= 0,

since xDxu-\- yDyu-\-zDz
u (m-}-T)u

by Euler s Theorem (v.
Dif. Cal. Art. 220).

118. = is a solution of Laplace s Equation AT. Art. 75)
r

TT

and is of the form -

r

} is then a solution of Laplace s Equation by Art. 116;

TT

it is of the form
t by Art. 117 and is a homogeneous function of the

degree m 1. ^
Therefore yam+1A1Aa

-^)
A8

&quot;

^*m( /
^s a so^u^on of Laplace s Equation,

and is a rational integral homogeneous Algebraic function of x, y, and z of the

mth degree, and is consequently a Solid Spherical Harmonic of the mth

degree (v.
Art. 110); and ^ +1A

1A2A3

&quot; *A
OT ( )

is a Surface Spherical Har

monic of the mth degree. ,-

Moreover since the direction of each of the lines OH^ OH2 ,
OHm depends

upon two angles which may be taken at pleasure, these angles and M are

/M\
2m + 1 arbitrary constants and may be so chosen that rm + lD

h}
Dh^ -D

hm ^ J

may be any given Surface Spherical Harmonic.

Consequently any given Surface Spherical Harmonic may be regarded as

formed by differentiating successively alongm determinate lines OH^ Off2

Offm,
and is given except for the undetermined factor M when these lines are

given.

The lines OH^ OH^ OHS,

- - - OHm are called the axes of the Harmonic, and

the points where they meet the surface of the unit sphere the poles of the

Harmonic. The m axes of a Zonal Harmonic coincide with the axis of coordi

nates (v.
Art. 86) and consequently the m axes of a Laplacian coincide with

what we have called the axis of the Laplacian (v.
Art. 112).
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119. Any Surface Zonal Harmonic Pm (ft)
is equal to zero for m real and

distinct values of ft which lie between 1 and 1
;
and any Associated Func

tion P*(p) is equal to zero for m n real and distinct values of ft which lie

between 1 and 1 .

df*&amp;gt;

contains
(ft

2
I)&quot;

1-* as a factor, v. Art. 89.

From Eolle s Theorem, &quot; If f(x) is continuous and single-valued and is equal

to zero for the real values a and b of x, j is equal to zero for at least one
ctoc

real value of x between a and b&quot;
(v.

Dif. Cal. Art. 126) it follows that since

(,.*
1 \m

(ft
2

l)
m = when ft 1 and when

/JL
= ! -^

^
- = for at least

d(u? i\m
dP

one value of ft between 1 and 1. j cannot be equal to zero for

more than one value of ft between 1 and 1, for it contains
(ft

2

I)&quot;

1 &quot; 1 as a

factor and is a rational Algebraic polynomial of the 2m 1st degree.

In like manner we can show that ^ = has m 2 roots equal to
aft

1, m 2 roots equal to 1 and two real roots between 1 and 1 which

separate the three distinct roots of ^ =0; and in general if &&amp;lt;w-|-l

that ~7~it
= nas TW- k roots equal to 1, m k roots equal to 1,

and k real roots separating the k -f- 1 distinct roots of j k-i
=

Hence Pm(/*)
= or

f

.
? m

= has m real and distinct roots

between 1 and 1, and it has no more since it is of the rath degree.

dm+n(u? T)
m

The same reasoning shows that j m + n
= ^as m ~ n distinct real

roots between 1 and 1, and therefore that P^(ft) is equal to zero for m n

distinct real values of ft between 1 and 1. Since P^(ft) contains sin&quot; as a

factor it is also equal to zero when ft
= 1 and when ft

= 1 .

cos
n&amp;lt;f&amp;gt;

is equal to zero for 2n equidistant values of
&amp;lt;f&amp;gt;,

and sin
n&amp;lt;j&amp;gt;

is equal to

zero for 2n values of
&amp;lt;f&amp;gt;.

Hence any Tesseral Harmonic sin
n&amp;lt;f&amp;gt;P(/jL)

or

cos
n&amp;lt;P,(ft)

is equal to zero for 2n equidistant values of
&amp;lt;f&amp;gt;,

for ft
=

1, for

ft
=

1, and for m n real and different values of ft between 1 and 1.

It follows that the value of any Surface Zonal Harmonic Pm (fi)
at a point

on the surface of the unit sphere will have the same sign so long as the point
remains on one of the zones into which the surface of the sphere is divided by
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the m circles of latitude corresponding to the m roots of Pm(p) = 0, and will

change sign whenever the point passes from one of these zones into an adjoin

ing one; and that the value of any Tesseral Harmonic sin
n&amp;lt;f&amp;gt;P^(fi)

at a point

on the surface of the unit sphere will have the same sign so long as the point

remains on any one of the tesserae into which the surface of the sphere is

divided by the m n circles of latitude corresponding to the roots of P^(fj)
=

and the 2n meridians corresponding to the roots of sin
n&amp;lt;j&amp;gt;

= 0, and will change

sign whenever the point passes from one of these tesserae into an adjoining

one.



CHAPTER VII.*

CYLINDRICAL HARMONICS (BESSEL s FUNCTIONS).

120. In Arts. 11 and 17 we obtained

) (1)

as the general solution of Fourier s Equation

where Jo(x) = 1 - + --.-+ ...
(3)

and is called a Cylindrical Harmonic or BesseVs Function of the zeroth order;

and where

and is called a Cylindrical Harmonic or BesseVs Function of the Second Kind,
and of the zeroth order.

In Art. 17 we found that z = Jn(x)
is a particular solution of BesseVs Equation

where if n is unrestricted in value

n [~ i&amp;gt;

2 v*
j XN __ x

-i
x

_j 2;

&quot;W 2 r(7i + 1) L 22

(7i+ 1)
^

24
.2 !(n + l)(w + 2)

....]

and is called a Cylindrical Harmonic or BesseVs Function of the rath order
;

and that unless n is an integer

is the general solution of Bessel s Equation.

*The student should re-read carefully Arts. 11, 17, and 18(d) before beginning this

chapter.
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If n is an integer it can be shown that

J-B(*)
= (-l)V_ n(aO,

(v. Forsyth s Diff. Eq. Art. 102), and then

is the general solution of Bessel s Equation and

k=n 1

(Kn(x)} = Jn(x) log x
-
\ (|) &quot;2)

f

k=n I

k l)\

2\2/ -/(n+k)\klL 23

v. M. Bocher, Ann. Math. Vol. VI, No. 4

121. A useful expression for Jn (x) as a definite integral can be obtained

without difficulty from Bessel s Equation [(5) Art. 120] by a slight modifica

tion of the method given by Forsyth (Diff. Eq. Art. 136).

It was shown in Art. 17 that z = xnv is a solution of Bessel s Equation if

v satisfies the equation
, + 2nldv^ ^ (1)

dx* x dx

b

Assume v=*T cos (xt)dt (2)

where x and * are independent, T is an unknown function of t, and a and

are at present undetermined.

Then

and =

Substituting in (1)
after multiplying through by x, we have

b *

f
(1

*
a
)Tz cos (xt)dt -J (2 + l)*Tsin (srt)cft

= 0. (3)
^
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By integration by parts we find that

b b

f(1 t*)Tx cos (xt)dt= |(1 t*)Tsin (art)
|

a a

b

-J[(l
-

f) *j- 2tT^
sin (*0*.

a

and (3) reduces to

& &

l~ (1
2
)T sin

(art)
~1 f

[~ (1
2

)^+ (2?i l)tT\ sin
(a;)cft

= 0. (4)

a

If we determine T so that

fJT

(l-V^ + V&quot;-VtT=0, (5)

&

and a and & so that
|~

(1 P)T sin
(art)1=0 (6)

a

(4) will be satisfied and our problem will be solved. (5) gives

T=C(1-*2
)&quot;-*, (7)

and (6)
will obviously be satisfied if a = 1 and 6= 1.

Hence .= C fa a soiutio]1 of

and ,= Ca.- (8)

y. ^^
is a solution of Bessel s Equation.

If we let t= cos
&amp;lt;#&amp;gt;

in (8) we get

n

z= Cxn Tsin2&quot;

&amp;lt; cos (x cos

f
Expand cos (x cos

&amp;lt;)

into a series involving powers of x cos
&amp;lt;, integrate

term by term by the aid of the formulas

CS [Int. Cal. (1) Art. 99],
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2
|

sin&quot; x cos 7&quot; x.dx =

(Int. Gal. Art. 99 Ex. 2), and compare with (6) Art. 120, and we get

ir

xn /*Jn(x) =---TT-
J
sin2&quot;

&amp;lt;j&amp;gt;

cos
(a;

cos
&amp;lt;j&amp;gt;)d&amp;lt;j&amp;gt;. (9)

2^r(n+pr
If 7i is a positive integer (9) reduces to

*
* C 3

&amp;lt;

1.3.5. .(2
- I

Let 7i= in (9) or (10) and we get

J (x)
= - fcos (x cos

&amp;lt;f&amp;gt;)d&amp;lt;}&amp;gt;. (11)

EXAMPLES.

1. Obtain Formula (11) directly from Fourier s Equation, (2) Art. 120.

2. Prove by integration by parts that if n &amp;gt;

-

Tsin271
&amp;lt; cos &amp;lt; sin

(cc
cos

&amp;lt;)cty

=
%n-\-\ C8

2&quot;**
4&amp;gt;

cos
(
x cos

3. Prove by integration by parts that if w &amp;gt; 5

7T

Tsin2&quot;

&amp;lt;^&amp;gt;

cos &amp;lt; sin
(a;

cos
&amp;lt;#&amp;gt;)^

= -
C[2n sin2&quot;

&amp;lt;f&amp;gt; (2n 1) sin2&quot;- 2
&amp;lt;]

cos
(a;

cos
&amp;lt;f&amp;gt;)d&amp;lt;j&amp;gt;

.= - C

122. We can now readily obtain a number of useful formulas.

Differentiate (11) Art. 121 with respect to x and we get

M =- -
fcos &amp;lt;f&amp;gt;

sin (x cos
Cfo 7TJ

- fsin2
&amp;lt;#&amp;gt;

cos (x cos
&amp;lt;)cty by Ex. 2 Art. 121.
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Hence by (10) Art. 121 ^^= Jl (x). (1)

In like manner by the aid of Exs. 3 and 2, Art. 121, we can obtain the

relations

tftt&amp;gt;! Jr~n T /~\~\

dx

(2) can be written
X

1

tf&amp;gt;f-

(2) and (3) can be written

and x
dx

and

whence 2 = Jn _,(x) - Jn + l(x) (7)

and ^ e7n (x)
= 7w_ 1 (a

J) + Jn + 1 (x). (8)

The repeated use of formula (8) will enable us to get from J (x) and Jt(x)

any of Bessel s Functions whose order is a positive integer. For example, we

have

J2 (x) =^J,(x)
- J (x)
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From a table giving the values of J (x) and Ji(x), then, tables for the

functions of higher order are readily constructed. Such a table taken from

Kayleigh s Sound (Vol. I., page 265) will be found in the Appendix (Table VI.).

By the aid of (5) and (6) any derivative of Jn (x) can be expressed in terms

of Jn(x) and Jn+1 (x).
For example

n(n- 1)

If we write e/&quot;

(a;)
for in Fourier s Equation [(2) Art. 120], then multiply

through by xdx and integrate from zero to x, simplifying the resulting equa
tion by integration by parts, we get

dJQ(x) . C -r , \ 7
x + \ xJ (x)dx

=
;

o

a;

whence by (1) J
xJ (x)dx

= xJ^x) . (9)

If we write t7&quot;

(oj)
for z in Fourier s Equation, then multiply through by

d̂x

we get

N ^
tZic and integrate from zero- to x, simplifying by integration by parts

=
;

whence by (1) x(J,(x^dx
= [(7 (a;))

a+ (/i (*))&quot;]. (10)

In like manner we can get from Bessel s Equation [(5) Art. 120] the formula

which (6)
enables us to reduce to the form

)Jn + l(x). (12)

Formulas (9), (10), (11), and (12) will prove useful when we attempt to

develop in terms of Cylindrical Harmonics.
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Values of Jn (x) for larger values of x than those given in Table VI.,

Appendix, may be computed very easily from the formula

v. Lommel, Studien liber die Bessel schen Functionen, page 59.

The series terminates if 2n is an odd integer, but otherwise it is divergent.

It can be proved, however, that in any case the sum of m terms differs from Jn(x)
by less than the last term included, and consequently the formula can safely

be used for numerical computation.

EXAMPLES.

1. Confirm (1), (2),
and (3),

Art. 122, by obtaining them from
(3)

and
(6),

Art. 120.

2. Confirm (1),
Art. 122, by showing that Fourier s Equation will differ

entiate into the special form assumed by Bessel s Equation when n = 1.

3. Show that
(9),

Art. 122, is a special case of (4), Art. 122.

4. Show that the limit approached by Jn (x) as n increases indefinitely is

zero, and by the aid of this fact and of (8), Art. 122, prove that

5. Prove that

6. Show that the substitution of ( 1
)

for x in Legendre s Equation

will reduce it to the form

A
0)

and that the limiting form approached by this equation as n is indefinitely

increased is Fourier s Equation, and hence that JQ(x) can be regarded as some

constant factor multiplied by the limiting value approached by Pn (l ~~~l)

as n is indefinitely increased.
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123. To complete the solution of the drumhead problem taken up in

Art. 11, we found that it would be necessary to develop a given function of r

in the form

f(r)
=

AvTtfar) + A^I^r) + AzJ,(^r) +
where /i^, /A2 , //-8 , &c., are the roots of the transcendental equation 7 (/xa)

=
;

and in Art. 11, Ex. the development of unity in a series of precisely the

same form was needed.

(a) Let us consider another problem.

The convex surface and one base of a cylinder of radius a and length I are

kept at the constant temperature zero, the temperature at each point of the

other base is a given function of the distance of the point from the centre of

the base
; required the temperature of any point of the cylinder after the

permanent temperatures have been established.

Here we have to solve Laplace s Equation in Cylindrical Coordinates

([xiv] Art. 1).

D*u + i Dru + i
Din + Dlu = (1)

subject to the conditions

u = when z =
u &quot; r = a

u=f(r)
&quot; z = b,

and from the symmetry of the problem we know that Dfa = 0.

Assuming as usual u= E.Z we break (1) up into the equations

whence u= sinh (fjLz)Jo(pr) (2)

and u cosh (/jLz)JQ (fj,r) (3)

are particular solutions of
(1).

If
fj,k is a root of Jo(pa)

=
(4)

u= sinh (/vOJoCAV)

satisfies (1) and two of the three equations of condition.

If then f(r)
= AJ^r) + A zJ (^r) + AzJQ(^r) + (5)

A*u A*, /fa, &c., being roots of
(4),

J sinh r/ii) ,. . sinh Cu2 ) T . sinh

satisfies (1) and all of the equations of condition, and is the required solution.
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(b)
If instead of keeping the convex surface of the cylinder at the tempera

ture zero we surround it by a jacket impervious to heat, the equation of i

condition u= when r= a will be replaced by Dru = when r = a, or if

u= sinh (pz)Jo(pr) }

aw =0 when r
J dr

that is by M (M = * or
(
v * W Art 122)

by 7i(/*a)=0. (7)

If now in (5) and (6) PI, fa, p9 , &c., are roots of (7), (6) will be the solu

tion of our new problem.

(c)
If instead of keeping the convex surface of the cylinder at the tempera

ture zero we allpw it to cool in air at the temperature zero, the condition u= Q

when r a will be replaced by Dru -+- hu = when r= a, or if

u= sinh (fj,z)J (pr)

by pJo (pr) + hJ
(iJ,r)

= when r= a

that is by /W (/^) + ahJ (t*a)
= or (v. (1) Art. 122)

by fJLaJi(fJLa)
ahJ

(fjia)
= 0. (8)

If now in (5) and (6) fil} p2 , /*8 , &c., are roots of (8), (6) will be the

solution of our present problem.

124. It can be shown that J (x)
=

(1)

Ji(*)
=

(2)

and xJ (x) + XJo(x)=0 (3)

have each an infinite number of real positive roots
(v. Riemann, Par. Dif. Gl.,

97). The earlier roots of these equations can be computed without serious

difficulty from the table for the values of J (x) (Table VI., Appendix).

The first twelve roots of J (x)
= and Ji(x)

= are given in Table IV.,

Appendix, a table due to Stokes. Large roots of e7
(a?)
= and of Ji(x)

=
may be very easily computed from the formulas

^L_ og -050661 .053041 .262051

TT

= ~

4s- 1 (4s
-

I)
3 &quot;*&quot;

(4s -I)
5

x&amp;lt;?
.151982 . .015399 .245270 .

+ 8-* +

given by Stokes in Camb. Phil. Trans., Vol. IX., x^ representing the 5th root

of J (x)
=

0, and a*? the sth root of Jv (x)
= 0.

* We shall find it convenient to use the familiar notation of/ (*)== (v. Dif. Cal., p. 119).
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125. We have seen in Art. 123 that

U= sink (fa.z)J (iJ,kr) and V= sinh (/jL^J^r) are solutions of V*?7=0
and V2F=0 if we express Laplace s Equation in terms of Cylindrical
Coordinates (v. (1) Art. 123).

Hence, if fdS represents the surface integral over any closed surface, we
have

by Green s Theorem (v.
Art. 92).

If we take the cylinder of Art. 123 as our surface, and perform the

integrations and simplify the resulting equation, we find

a

1

2

(1)

Hence if fit and fa are different roots of

or of

or of fiaJ^fjio) \J
(jj.a)

= 0,

then rJofarMfarjdr= .
(2)

o

EXAMPLE.

Obtain (1) Art. 125 directly from Fourier s Equation

126. We are now able to obtain the developments called for in Art. 123.

Let f(r)
= A^far) + A 2J (fji2r) + AJ^r) + (1)

f-u ^2) Ma? &cv being roots of JQ(^t) =0, or of
JI(JJWL) =0, or of

liaJ^tw) \J
(fjia)

=0.

To determine any coefficient ^
fc multiply (1) by rJQ(fLtr)dr and integrate

from zero to a. The first member will become
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Every term of the second member will vanish by (2) Art. 125 except the

term

2

o
k

o

by (10) Art. 122.

Hence Ak= T(^
The development (1) holds good from r= to r= a

(v.
Arts. 24, 25, and 88).

If fAlt /42 , fa, &e., are roots of JQ(^CL) 0, (2) reduces to

If /*!, /*2 , /^8&amp;gt; &c., are roots of J\(pa) =0, (2) reduces to

If //,!, /i2 , /^3 , &c., are roots of paJ^fjia) XJ^a) =0, (2) reduces to

For the important case where f(r)
= 1000

by (9) Art. 122, and (3) reduces to

2 Q (6)

k
~

(4) reduces to Ak
= except for &= 1 when

jj,k
= and we have A l

= 3 .

2A.

(5) reduces to ^
fc
= z-.

-
2 2N T
-

r (8)
(X

2+ pfafyjjfrta)
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EXAMPLES.

1. Show that in (12) Art. 11 any coefficient A k has the value given in (3)

Art. 126
;
and in the answer to Art. 11, Ex. the value given in

(7) Art. 126.

2. Show that if a drumhead be initially distorted so that it has circular

symmetry, it will not in general give a musical note
;
that it may be initially

distorted so as to give a musical note
;
that in this case the vibration will be

a steady vibration
;
that the frequencies of the various musical notes that can be

given when the distortion has circular symmetry are proportional to the roots

of J (x)
=

;
that the possible nodes for such vibrations are concentric circles

whose radii are proportional to the roots of JQ(x)
= 0.

3. A cylinder of radius one meter and altitude one meter has its upper
surface kept at the temperature 100, and its base and convex surface at the

temperature 15, until the stationary temperature is set up. Find the tempera
ture at points on the axis 25 cm., 50 cm., and 75 cm. from the base, and also

at a point 25 cm. from the base and 50 cm. from the axis.

Ans., 29.6
;
47.6

;
71.2

;
25.8.

4. An iron cylinder one meter long and twenty centimeters in diameter has its

convex surface covered with a so-called non-conducting cement one centimeter

thick. One end and the convex surface of the cylinder thus coated are kept at the

temperature zero, the other end at the temperature of 100. Find to the nearest

tenth of a degree the temperature of the middle point of the axis, and of the

points of the axis twenty centimeters from each end after the temperatures

have ceased to change. Given that the conductivity of iron is 0.185 and of

cement 0.000162 in C. G. S. units. Find also the temperature of a point on

the surface midway between the ends, and of points on the surface twenty

centimeters from each end. Find the temperatures of the three points of the

axis, supposing the coating a perfect non-conductor, and again, supposing the

coating absent. Neglect the curvature of the coating.

Ans., 15.4
;
40.85

;
72.8

;
15.3

;
40.7

;
72.5

;
0.0

;
0.0

;
1.3.

127. If instead of considering the cooling of a cylinder as in Art. 123 we

have to deal with a cylindrical shell whose curved surfaces are co-axial

cylinders, we are obliged to use the Bessel s Functions of the second kind.

Let our equations of condition be

u = when 2= 0, u = when r= a,

u =f(r)
&quot; z = b, u= &quot; r= c.

Then (v.
Art. 123)

= sn
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where fit is a root of the equation

231

will satisfy Laplace s Equation [(1) Art. 123] and all of the equations of

condition except the second.

Hence
sin

is the required solution if

/( )
= 4 .(W)

-

(2)

(3)

The development (3) is easily obtained.

Call the parenthesis for the sake of brevity BQ(nkr). Then by the method

of Art. 125 we get if we integrate over our cylindrical shell

)B (iAlr)dr= Q
(4)

if
/j,k and /A{

are roots of (1) ;
and by an easy extension of (10) Art. 122

c

a

Determining the coefficients in (3) as in Art. 124 and simplifying by the

aid of (4) we have

^

EXAMPLE.

If a membrane bounded by concentric circles of radius a and radius b, and

fastened at the edges, is initially distorted into a form symmetrical with respect
to the centre, and then allowed to vibrate

where ^4t is obtained from (6) Art. 127 by replacing c by 6.
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128. If in the cooling of a cylinder u = when z = 0, u = when z = b,

and u =/(z) when r= a, the problem is easily solved.

If in (2) and (3) Art. 123
//-

is replaced by /JLI
we can readily obtain

and 2 = cos

as particular solutions of Laplace s Equation [(1) Art. 123] ;
and

and is real

where

by Art. 31 (7) and (8).

Hence

is our required solution.

dz

=
&amp;gt; . At. sin

b /kirai
&amp;lt;J(

(2)

(3)

EXAMPLES.

1. If the cylinder is hollow and we have u= when z = 0, u = when

=
b, u= when r= c, and ^ =/() when r= a

;
then

-^r/k7rri\

k7rci\ -^-/kirci

) M~r
where JA has the value given in (2) Art. 128, and

KO(XI)
= K (xi)

- J (xi) log t

= J (xi) log x - + )
&quot;

22,42^2

k7rci\ -== /kfrci\

b ) \~b~)

ft +

[v. (4)
Art. 120], and is real.

2. A hollow cylinder 6 feet long whose inner surface has- the radius 3 inches,

and whose outer surface has the radius 1 foot, has its bases and outer surface

kept at the temperature 0, and its inner surface at the temperature 100, until
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the permanent state of temperatures is established
;
find the temperatures of

two points in a plane parallel to the bases and half-way between them, one of

which is 6 inches and the other 9 inches from the axis. Ans., 49.6; 20.2.

129. If in the problem of Art. 123 the temperatures of the points of the

upper base of the cylinder are unsymmetrical so that
u=f(r,&amp;lt;f&amp;gt;)

when z= b,

we have to get particular solutions of Laplace s Equation [(1) Art. 123] for

the case where D\u is not equal to zero. We readily find that

u = sinh (/jiz)[A cos
n&amp;lt;J&amp;gt; -f

and u = cosh (pz)[A cos
n&amp;lt;f&amp;gt; -\-

are such solutions, and that

=, *=
.

^-\ ^A sinh pkzu = &amp;gt; &amp;gt; . , , \An r. cos n

is the solution of the given problem if

/(r,&amp;lt;)

=V V
(/4 n(A

. cos
w&amp;lt;^&amp;gt; + Bnk sin TI

where /i^. is a root of the equation

^? =
(
3

&amp;gt;

EXAMPLES.

1. Show that

2. Show that
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3. Show that in Art. 129

2* a

2ir a

fd+ftfr,*)
rinn

n,/fc

4. Obtain the coefficients for the case where the convex surface of the

cylinder is impervious to heat.

5. Obtain the coefficients for the case where the convex surface of the

cylinder is exposed to air at the temperature zero.

6. Show that if in a drumhead problem of Art. 11 the initial distortion is

unsymmetrical, so that we have to solve the equation [xi] Art. 1 subject to

the conditions * =f(r, &amp;lt;f&amp;gt;)

when t= 0, Dt
z = when t = 0, z = when r= a,

the solution is

cos n

where A
0tk ,

B
0tk ,

A
n&amp;lt;k

,
and Bnk have the values given in Ex. 3.

7. What modifications do the statements made in Ex. 2, Art. 126, need to

make them apply to the unsymmetrical case treated in Ex. 6 ?

Show that any possible nodal system in Ex. 6 is composed of concentric

circles and of radii whose outer extremities are equidistant, v. Kayleigh s

Sound, Vol. I., Arts. (202-207).
8. Solve the problem of Art. 127 and of Art. 127, Ex. for the unsym

metrical case. Suggestion: AJn (x) + BKn (x) is a solution of Bessel s

Equation.

9. Solve the problem of Art. 128 and of Art. 128, Ex. 1, for- the case where

u =/(z, &amp;lt;)

when r= a. Suggestion : u = sin /j,z(A cos
n&amp;lt;^&amp;gt; -f- B sin

ntf&amp;gt;)Jn(fj,ri)

is a solution of Laplace s Equation, and /(, &amp;lt;f&amp;gt;)

can be developed into a double

Fourier s Series [v. (15) Art. 71].
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10. Show that in dealing with a wedge cut from a cylinder by planes

passed through the axis, or with a membrane in the form of a circular sector,

it may be necessary to use BessePs Functions of fractional or incommensurable

orders.

11. BernouilWs Problem (v. Chapter IX). In considering small transverse

vibrations of a uniform, heavy, flexible, inelastic string fastened at one end

and initially distorted into some given curve, we have to solve the equation

D?y=&(xDly -\- Dx y), subject to the conditions D
t y = Q when =

0,

y =f(x) when t= 0, y= when x = a
;

the origin being taken at the

distance a below the point of suspension and the axis of X taken vertical.

Show that y =V Ak cos ^ikct

where 1

and
jjik is a root of the equation

f(
X)J (2

s \s

and A& or- -
* , T, \ -,n

12. As a simple case under Example 10 consider the vibrations of a circular

membrane fastened at the perimeter and also along a radius and then initially

distorted
(v. Kayleigh s Sound, Art. 207). In this case we must modify the

formula given in Ex. 6 by dropping out the terms involving cosn&amp;lt;j&amp;gt;
and by

taking n= &amp;gt; The required solution is

where is a root of

sn

7T
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For the terms in which ra is odd, Jm(x) can be readily obtained from (13)
2

Art. 122, which will become a finite sum.

For example, (13) Art. 122 gives the values

sin x
; J$(x)

=^ f - sin x cos x
J

;

13. The question of the flow of heat in three dimensions involves a problem

not unlike the last.

Suppose the initial temperatures of all points in a sphere of radius c given,

ind let the surface be kept at the temperature zero. Then we have to solve

;he equation

(1)

([iv] Art. 1) subject to the conditions

u = when r= c,

u =f(r, 0, &amp;lt;)

when t = 0.

If we assume u = T.R. V where T is a function of t only, R of r only, and F
of and &amp;lt; only, (1) can be broken up into

f+vr=o _

(2)

and

Hence T= e~ a2a2t
,
T= F

ro (/Lt, &amp;lt;/&amp;gt;) [v. Art. 102 (2)], and R is still to be found.

If in (4)
we let x= ar and z = R^far it becomes

which is satisfied by * = Jm + ^x). (v.
Art. 17.)

Therefore R= ~j=Jm + 1 (
ar)

\ar



CHAP. VII.] FLOW OF HEAT IN A SPHERE. 237

ei by (3) Art. 114,

cos^ + 2?m, .2^ n (r) sin W
&amp;lt;#&amp;gt;]

P 0*).

where at is a root of the equation

and

where Dmat=m, a , t

The final solution is

7)1=00 n=m ifc=oo

=4=X X \
P

r
ifc=l

cf. Riemann, Par. Dif. GL, 72 and 73.



CHAPTER YIII.

LAPLACE S EQUATION IN CURVILINEAR COORDINATES.

ELLIPSOIDAL HARMONICS.

130. Orthogonal Curvilinear Coordinates.

If Ffa y, z)
=

Pl

F2 (x, y, z)
=

p2
(1)

are the equations in rectangular coordinates of three surfaces that are mutually
perpendicular no matter what the values of p1} Pz ,

and p8 ,
the parameters Pl ,

p2 ,
and p3 , may be regarded as a set of coordinates for a point of intersection

of the three surfaces, in the sense that when Plj Pz , p3 are given the point in

question is determined, and when the point is given the corresponding values

f pi? P2&amp;gt; p&) can be found.

From equations (1) x, y, and z can be expressed in terms of Pl , Pz ,
and p3 .

Suppose this done. If now x, y, z are the rectangular coordinates of the

point pi
=

a, p z
=

b, ps
=

c, the rectangular coordinates of the points

Pl
= a + dpl , Pz

=
b, p3

=
c, are obviously x + Dp

x.dPl -f eu y+ Dpiy.dpl -f e2 ,

*+ Dp^.dpi -f- e3 ,
where ^, e2 ,

and e3 are infinitesimals of higher order than

dpi . Hence the square of the distance between the points will differ by an
infinitesimal of higher order than that of dp? from dnf where

Let

(2)

Then if dn-^ is the element of length normal to the surface

normal to p2
= b) and dns normal to p s

= c
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The element of surface dSi on the surface pi
= a is easily seen to be

and the element of volume dv is

= *

EXAMPLE.

Show that hf= (DxPiY+ (Z&amp;gt;ypl)
a+

Suggestion: If ^ has the value just given f^-S ^&amp;gt;

_^Pi are ^.^
AI iii hi

direction cosines of the normal at any given point of pi
= a.

(v. Int. CaL

page 161.) Then

131. Laplace s Equation in orthogonal curvilinear coordinates.

If we apply the special form of Green s Theorem

Vdxdyd* = Dn VdS (v.
Art. 98)

to the space bounded by the surfaces pi
= a, p*

=
b, p s

=
c, pi

= a-{-dp l j

we have

whence

and Laplace s Equation in our curvilinear system is
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If it happens that- V^pi^O, Vpi will satisfy (7) and we shall have

hlhzhsDp /j-j~\
= (). In like manner if V2

p2
= we have D

p /7-^-j=0,

and if V2

ps
= we have D

p
(
-j-~r j

=
;
and therefore (7) reduces to

when V2

pi
= 0, V2

p2
=

0, and V 2
p 8
= 0.

132. - If instead of having the value of the Potential Function V given on

the surface of a sphere as in our Spherical Harmonic problem, we have it

given at all the points on the surface of an oblate spheroid, and are required to

find its value at any internal or external point, we can easily get a solution by
methods in no essential respect different from those already employed, if only

we rightly choose our system of coordinates.

If we take an ellipse and an hyperbola having the same foci, and revolve

them about the minor axis of the ellipse, we shall get a pair of surfaces which

are mutually perpendicular ;
a plane through the axis of revolution will cut

both the spheroid and the hyperboloid orthogonally.

The equations of the three surfaces can be written :

1 = (2)

where X2
&amp;gt; 6

2
&amp;gt; ft

2
,
2b being the distance between the foci.

For all values of X, ft, and v consistent with the inequality above written

the surfaces (1), (2), (3) intersect in real points and cut orthogonally.

X, ft, and v can be so chosen that the surfaces will intersect in any given

point, and therefore can be taken as a set of curvilinear coordinates, and

Laplace s Equation can be expressed in terms of them by the aid of Formula

[xv] Art. 1.

From (1), (2),
and (3)

we readily get

i = xv
b\l + vz

)
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whence

and
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7,
2 \2

/&! A

[v. 130 (2)].
In like manner we get

and

and [xv] Art. 1 becomes

XV2

(6)

(8)

which is Laplace s Equation in terms of our Spheroidal Coordinates X, /A, and p.

If now in place of X, #, and v we can introduce some function of X, some
function of ^ and some function of v which, therefore, will represent the

same set of orthogonal surfaces, and if we can choose these functions a, /?,

and y, which of course are functions of x, y, and z, so that Vaa = 0,

V2
/?
=

0, and V2
y = 0, equation (8) must reduce to the simple and sym

metrical form given in [xvi] Art. 1.

These functions a, @, and y are easily found. Equation (8) is V2F=0
expressed in terms of X, /JL,

and v. Assume that V is a function of X only ;

then D^VQ, and DV V=0, and (8) reduces to

whence

and

and is a function of X which satisfies Laplace s Equation.
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Take this as a leaving c-i at present undetermined, so that

CidX

In the same way we get

/J 1 1

and B=

(v.
Int. Gal. Art. 46, Ex.)

2
and y= c3 tan&quot;

1
!/.

Substituting these values in (8) and taking cl
= cz = b, and c3 = l,

(8)
reduces at once to

X2
/-t

2 X2

/x
2 y

or since X = b sec a
, fi b sech ft, and v = tan y , (10)

to cos 2 a Da
2T+ cosh2

ftDg V+ (cosh
2
ft
- cos 2 a)D*V= (11)

which is Laplace s Equation in terms of what we may call Normal Oblate

Spheroidal Coordinates.

In using (11) it is to be noted that the point whose coordinates are (a, ft, y)

is the point of intersection of an oblate spheroid whose, semi-axes are b sec a

and b tan a, an imparted hyperboloid of revolution whose semi-axes are

b sech ft and itanhjS, and a plane containing the axis of the system and

making the angle y with a fixed plane ;
and that if the axis of revolution is

the axis of Y and the fixed plane is the plane of XY, the rectangular coordi

nates of (a, ft, y) are

x = b sec a sech ft cosy, y= b tan a tanh ft,
z = bseca sech ft sin y (12)

[v. (4)].

If now we let a range from to , ft
from oo to oo

,
and y from to 2?r,

we shall be able to represent all points in space ;
and if we agree that negative

values of ft
shall belong to points below a plane through the origin and

perpendicular to the axis of revolution and positive values of ft to points

above that plane, not only shall we have no ambiguity, but also the rectangular

coordinates of any point as given in (12) will have their proper signs.
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EXAMPLES.

1. If the spheroid is a prolate spheroid, the ellipse and confocal hyperbola
must be revolved about the major axis of the ellipse, and the plane must con

tain that axis. In place of equations (1), (2), and (3) of Art. 132 we have,

then,

,-1 =
A.

2 A 2
b2 A2

where

Laplace s Equation becomes

L-^A[ (X*
-

**)A F]

(1)reduoesto
_.g+ _ 2+

(A2_-^^
dv,

where

a= ctnh- 1 -? ^= tanh~ 1

yj and v^tan&quot; 1
^.

o b

Since X= b ctnh a, fji
= b tanh /?, and v = tan y

(2) can be reduced to

sinh^D^F+cosh^D/F^ (sinh
2 a + cosh2

/8)Z&amp;gt;y
2 r=0. (3)

In using (3) it is to be noted that the point (a, ft, y) is the point of inter

section of a prolate spheroid whose semi-axes are b ctnh a and b csch a, a

biparted hyperboloid of revolution whose semi-axes are b tanh (3 and b sech /?,

and a plane containing the axis of revolution and making the angle y with a

fixed plane.
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If the fixed plane is that of (XY) the rectangular coordinates of any point

(a, ft, y) are

x = b ctnha tanh/2, y= b csch a sech ft cos y ,
z = b cscha sech/3siny,

and a may range from oo to 0, /3 from oo to oo
,
and y from to 2?r.

Negative values of (3 are to be taken for points lying to the left of a plane

through the origin perpendicular to the axis of revolution.

2. Transform Laplace s Equation in Spherical Coordinates [xm] Art. 1

to the symmetrical form

1 fi

where a = -&amp;gt; (3
= log tan -&amp;gt; and y = &amp;lt;.

3. Transform Laplace s Equation in Cylindrical Coordinates [xiv] Art. 1

to the symmetrical form

D*V+DV+ e2 D 2V=

where a = logr, /3
=

&amp;lt;,
and y = .

133. In each of the cases we have considered, it has been easy to pass

from Laplace s Equation in terms of the chosen coordinates representing an

orthogonal system of surfaces to the symmetrical form [xvi] Art. 1
;
and it is

evident that our new coordinate a is a value of V corresponding to such a

distribution that the surfaces obtained by giving particular values to p t are

eqnipotential surfaces
;

that ft is a value of V corresponding to such a

distribution that the surfaces obtained by giving particular values to p2 are

equipotential surfaces
;
and that y is a value of V corresponding to such a

distribution that the surfaces obtained by giving particular values to p3 are

equipotential surfaces. a, /?;
and y are called by Lame &quot; thermometric

parameters.&quot;

The condition that these values should exist, for a given system of surfaces,

that is, that the distribution described above should be possible, is readily

obtained. We shall work it out for a. It is merely the condition that V in

Laplace s Equation may be a function of pi alone.

If V is a function of p t alone
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Therefore
[(Z&amp;gt;IPI)

2+ (D,pi)
s+ (Ap,)

2

]

whence

+AV] =

where ^\(pi) may be any function of p l alone. Our required conditions are

then

and when they are fulfilled the original curvilinear coordinates p1? p2 , p3 ,

correspond to possible equipotential or isothermal surfaces, thermometric

parameters a, ($, and y exist, and the reduction of Laplace s Equation to the

symmetrical form [xvi] Art. 1 is possible.

134. Returning to our Oblate Spheroid problem of Art. 132 we can proceed

as usual to break up our equation (11) Art. 132.

Assume that V=L.M.N, where L is a function of a only, M of. (3 only,

and A7

&quot;

of y only. (11) Art. 132 becomes

cosg
q&amp;lt;M

cos a

M
d*L

[cosh
2
/? cos2 a

N
cosh2

/? d?M
L cosh2

/3 cos2 a da2 JWcosh2
(3 cos 2adft

2

1 d*N
N dy*

The first member is independent of y, and the second member is independent
of a and

/?, and the two members are identically equal. The second member
is then independent of a, (3, and y and must be constant; call it ri*. We have,

then,

(1)
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, cos*ad2L .

(1) gives us N=A cos ny -\- B sin ny. (3)

(2) can be written

whence cos2 a +
[&amp;gt;

2 cos2 a m(m + !)]
=

(4)

and cosh2
(3 ^jji+ [m(m + 1)

- n2 cosh2

0]Jf= 0.
(5)

If we introduce x = tanh /? in (5) it becomes

where since x = tanh /? and ft may have any value from oo to oo ,
x may

have any value between 1 and 1. (6) is a familiar equation having for a

particular solution

(7)

(v.
Arts. 101 and 102)

If we introduce in (4) x= tan a it reduces to

(8)
is an unfamiliar equation, but it can be treated as (6) was treated if we

take the pains to go back to the beginning and follow the steps of the treat

ment of Legendre s Equation.

This labor can be saved, however, by noting that if we let x = -. (8) becomes

and is identical in form with
(6).

Hence

L= Pl(y) and i=(l_/)i^ (v. Art. 101),

where y= i tan a, are particular solutions of
(4).

We can avoid imaginaries if we use the values

=-0 Piy) and L^P+^l-itf*. (9)
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Since we assumed F= L. M.N we have

F= (A cos ny -f- B sin ny)P,^(tanh ft)( i)
m~ n

P^(i tan a)

and r= (.4
cos ny + B sin rcy)P*(tanh fflt**

+ * sec- a (1 }

as particular solutions of (11) Art. 132.

If the problem is symmetrical with respect to the axis of the spheroid

^=0, n2 and our particular solutions (10) reduce to

V== (- i)
mPrn (i

tan a)Pm(tanl , ,

and F= i
m + lQm (i

tan a)Pm(tanh ft).

If, then, F is given on the surface of a spheroid as a function of ft and y,

we must express it as a function of tanh ft and y, and shall be obliged to

develop it in terms of Spherical Harmonics of tanh ft and y by the formulas of

Chapter VII, using the first equation in (10) for the value of F at an internal

point, and the second for the value of F at an external point. If the problem

is symmetrical, we must develop in Zonal Harmonics of tanh ft by the formulas

of Chapter VI.

A convenient form for Qm(i tan a) is obtained from (2) Art. 100
;

it is

Qm(i
tan a)=- iPm(i

tan
a)J + ^ (12)

tan a

oo

Hence Q (i
tan a)

=
ij ^

. ^
=

i\^
a
J-

(13)

tana

EXAMPLES.

1. A conductor in the form of an oblate spheroid whose semi-axes are

b sec a and b tan a is charged with electricity and is found to be at potential

F
;

find the value of the potential function at any internal or external point.

Here F = FP (tanh ft). Hence at an internal point

and at an external point

Since V in (2) involves a only, the equipotential surfaces are alv spheroids

confocal with the conductor.



248 ELLIPSOIDAL HARMONICS. [Airr. 135.

2. The upper half of an oblate spheroid whose semi-axes are b sec a and

b tan a is kept at the temperature unity, and the lower half at the tempera
ture zero. Find the permanent temperature at any internal point.

1 . 3 P^i tan a) _ 7 !

(v.
Art. 93). u may be expressed in terms of x, y, and z without serious

difficulty [v. (12) Art. 132].

U
2&quot;*~4c 8 2*2 5c8+ 362

c

if 2c= 2b tan a = minor axis of spheroid.

135. Let us now find the potential function at an external point due to

the attraction of a solid homogeneous oblate spheroid, using the method em

ployed in Arts. 98 and 99.

Consider first the potential function due to a shell bounded by the spheroids

for which a =
&amp;lt;f&amp;gt;

and a =
&amp;lt;f&amp;gt;

-f~^
By (1) Art. 98 we have

47rpK
=

\_Dn F! Dn F2]a _ 4, , (1)

where p is the density and K the thickness of the shell, Fi the value., of the

potential function at an internal point, and F2 the value of the potential

function at an external point.

Let Fj =

and Fjr
= ^jBm im + lQm(i

tan a)Pm(tanh ft) [v. (11) Art. 134].

Since Vl and F2 must have the same value when a =
&amp;lt;j&amp;gt;

A -7? -** 4- 1 Qm(i tan ft) _ / 1^7? T /2^Am --o*
p^^ tan^ ( A; .Dmj X1 _L^ r p ^-,2

[v. (12) Art. 134].
00

Hence FI = VtmjgmPm(tanh ft)Pm (i
tan a) |

-

^V %/ (

and r,= ^(tanh ft)Pm(i tan f)

(3)
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[Dn V,
- Dn F2]a _ ,

= [D.Fx
- Da F2] tt . ^.a). = *

sec2 a
(i tan a)

c?Pm(itana)

taut

(Pm(ttau$)

v. Art. 130 (3), and Art. 132 (5) and (10).

[Dna]a = *
=

Hence [D. V,
- Dn F2]a . ,

-

K = [dn]a = ^
= b sec

by (4),
and (1) may be written

sec2

Since tanh2
p= $P (tanh /8) + P2(tan

by (5) Art. 95, to satisfy (5)
we must give m the values and 2 and

= | ,rp&
2 sec2

&amp;lt;(3
tan2

4 +

and ^2
=

irpb
2 sec2

&amp;lt;#&amp;gt;(3

tan2

(4)

/K\
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So that by (3)

Fi = | irpb* sec
2

&amp;lt;(3
tan2

&amp;lt; -f

tan
&amp;lt;/&amp;gt;

P
2(tanh ft)Pz (i

tan a)

tan(/&amp;gt;

and F2
= f ?rp&

2 sec2

&amp;lt;(3
tan2

&amp;lt;f&amp;gt;
-f l)rf^[i^ (i

tan a)

-f *
3P

2(tanh ft) Q2(i
tan a)] . (7)

The potential function at an external point due to the solid spheroid for

which a = a is

F= f F2
=

| Trpi
2 sec2 a tan a [t# (*

tan a) -f- t
3

P,(tanh ^8) Q2(i
tan a)]. (8)

&amp;lt;
=

If 2a is the major axis and 2c the minor axis of the spheroid

C

$7rp&
2 sec2 a tan a = * - =

where M is the mass of the spheroid. Therefore

MV=- [iQ (i
tan a) + tP8(tanh ft) Q2(i

tan a)] (9)

is the required value. (9) can be reduced to

EXAMPLES.

1. Break up the equation (3) Ex. 1, Art. 132, for the prolate spheroid, and

obtain particular solutions of the term

V= (A cos ny + B sin wy)P^(tanh /3)P^(ctnh a),

V=(A cos ny + B sin ny)Pj(tanh /8)(- I)
2

csch&quot;^
2. Break up and solve the equations of Exs. 2 and 3, Art. 132, and show

that they lead to familiar forms.

3. If in Ex. 1, Art. 132, the conductor is a prolate spheroid whose semi-

axes are&ctnha and 6cscha show that

F= FO at an internal point. V= F at an external point.a
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4. Show that the potential function at an external point due to the attrac

tion of a homogeneous solid prolate spheroid is

=
[ (ctnh a)

- P a)] .

Ellipsoidal Harmonics.

136. If we afe dealing with an ellipsoid instead of a spheroid, we can take

our orthogonal system of surfaces a set of confocal quadric$ ;

x_- , _jr
A2^A2- ^ A2

c

(1)

where X3
&amp;gt; c

2
&amp;gt; p? &amp;gt; &

2
&amp;gt; vz

. Here the first surface is an ellipsoid, the

second an imparted hyperboloid, and the third a biparted hyperboloid. Each

of the three principal sections of the system consists of confocal conies, and it

is well known and is easily shown that the surfaces cut orthogonally. A, ft,

and v will be our curvilinear coordinates, and are known as Ellipsoidal

Coordinates.

We find without difficulty that

ar= y*= &amp;gt; z*=
C
2

(C
2

It*)
(2)

==
/ 2 2\/\2 2~\ ^3

2 == \ 2 2\x 2 ^ (3)

To avoid ambiguity, we shall suppose that of the nine semi-axes in (1)

Vc
2

p2
is to be taken with the positive sign for a point on the half of the

imparted hyperboloid on which z is positive, and with the negative sign for a

point on the half on which z is negative ; V^
2 v2

is to be taken with the

positive sign for a point on the half of the biparted hyperboloid on which y is

positive, and with the negative sign for a point on the half on which y is

negative ;
v is to be taken positive for a point on the half of the biparted

hyperboloid on which x is positive, and negative for a point on the half on

which x is negative, and that the remaining six are to be always positive. It

follows that our Ellipsoidal Coordinates have the disadvantage that to fully

fix a point we need to know not merely the values of its coordinates A, p, and

v, but the signs of V/c
2

/*
2

,
and \Jb* v2 as well.
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We shall see later, Art. 139, when we come to introduce what we may call

the Normal Ellipsoidal Coordinates a, ft, and y that they are free from this

disadvantage.

It is to be observed that A. may range from c to oo , /* from b to c, and v from
b to b.

The element of length perpendicular to the Ellipsoid is

The element of Ellipsoidal surface is

and the element of volume is_ _at; = . . . =
.

N N ^
dXdudv. (6)

V(A
2-

&) (A
2- c

2

) (^
2-

IF) (c
2

i#) (l&amp;gt;*

-
it) (c

2-
1/

2

)

The surface integral of any given function of p and v taken over the

ellipsoid is

ft C

where /i(/i,v), f*(n,v)t f*(p&amp;gt;v)
and fi(p,v) are the values of the given function

on the four quarters of the ellipsoid into which it is divided by the planes of

(-XT) and (XZ).

Laplace s Equation proves reducible to

where

-
v*)DlV+ (\

2-
v?)I&amp;gt;}r+ (A

2-
p*)Dir= (8)

d\C d\ c= c I . ? B= c I .

J
\/(A

2- 62

) (X*
~ C2)

J
\/(

C
2_

/4
2

)(/4
2 b2)

= c C dv
/g)

J v^2
-i&amp;gt;

2
)fc

2 -i/2
)

v
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a, /3,
and y can be expressed as Elliptic Integrals of the first class and are

-f),
&amp;gt;

C&quot;

(10)

dna

(11)

(v.
Int. Cal. Arts. 179, 192, and 196).

137. If in (8) Art. 136 we assume F= L.M.N where L involves a only,

M involves ft only, and N involves y only, (8) can be written

_~
L da M

(1) is too complicated to be broken up by our usual method.

If, however, we let

1&amp;lt;PL

substitute in (1) and make use of the fact that the result must be identically

zero, we find that the coefficients are zero for all values of k except k= a&quot;nd

k= 2, and that a = b = c
,
and a2

= b2
= c2 .

Therefore (1) can be broken up into the three equations

_=
(o -f a., ft

1
)M
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We shall And it convenient to take 2 as m(m -f 1) and as

whence

(2)

= 0.

If now in (2) we replace a, /?,
and y by their values in terms of X, /u, and

v, we get

[m(m + 1)X
2

(b* -f c2)p]L =

dfj,

[m(m -}- l)/u-
2

(ft

2 -

(3)

[m(m + l}v- (b
2 + c

2

)jp]JV= 0.

Whence if Z = ^*(X), it follows that M=E^) and N=E(v), and that

) (4)

is a solution of Laplace s Equation, (8) Art. 136.

The equation

=
(5)

is known as Lame s Equation, and $%(x) as a Lame s Function or an
.?&&amp;gt;-

soidal Harmonic. We shall suppose m a positive integer.

To get a particular solution of (5) let z = 2ajx
k

. Substitute in (5) and

reduce and we get

- m(m + I)]o 4
-

(#+ c
2

) [(A: + 2)
2

p]a t + 9

A; + 3) (A + 4)a, + 4
= 0. (6)

We have now only to choose a sequence of coefficients satisfying (6),
and we

may take any two consecutive coefficients arbitrarily.
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(6) which is ordinarily a relation connecting three consecutive coefficients

reduces to a relation between two when k = m, when k = 3, and when

k= 4. If we take am+2 = 0, am+4 ,
aw+6 &amp;gt;

&c., will vanish. Let am = l.

If ra is even the coefficient of a in (6) will be zero
;

if p has such a value

that a_ 2 is zero, a_ 4 , a_ 6 , &c., will be zero, and there will be no terms in

the solution involving -negative powers of x.

If we write the values of am _ 2 &amp;gt; m -4 &c
-&amp;gt; ^7 the a^ f (6) we see that

a,B_ 2 is of the first degree in^, am_ 4 of the second degree in p, &c., and a_ 2

of the degree -f- 1 in 7?.
There are then + 1 values of

^&amp;gt;

which we shall

call pi, p2 , ps , &c., for which a_ 2 will vanish, and for which our solutions will

be of the form

if m is even.

If m is odd, the coefficient of c^ in (6) will vanish and we can choose p so

that a_i shall be zero, and then all coefficients of lower order will vanish.

m 4- 1 . .,, , m -\- 1 .

a_ l is of the degree
- in p, and there will be - values plt p2 , ps ,

&c., of p for which

Following Heine we shall call the solution just obtained Kl^(x) so that

Kp(x)= xm + am_ 2 x
m -* + am_ 4 x&amp;gt;-*+-- (7)

terminating with aQ if m is even, and with a^x if m is odd. If m is even,

there are 77+! of these functions K(x), K%*(x)&amp;gt; &c., and there are -
_ 4

of them if m is odd. The coefficients can be computed by the aid of
(6).

If in Lame s Equation (5) we let z = v^/x
2 b2 we get the equation

-
[(m + 2)(m

-
l)z

2 + c- -
(b

2 + c*)p\v
= 0. (8)

Letting v= *#* we obtain the relation

\k(k + 3)
-

(m + 2)(m
-

l)]a,
-

{(6
2+ c^)[(A: + 2) -rf + c*(2A+ 5)} w

+ 4=0. (9)
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Proceeding exactly as before, we find that there are ^ values ql} q2 , q9 , &c.,

of p for which v = xm ~ l + am_ 3 x
m~ s

-\
-----

\- a^x if m is even, and ^i^

values for which v= xm~ l

-f am_ 3 z
m - 3

H-----\- a if w is odd.

Calling v *Jx~ b* L*(x) so that

L*(x)
= V*2 - P[x- 1 + am _ s x*-*+ am_ s x

m~ s + ], (10)

terminating with 040; if m is even and with a if m is odd, we have
2i

values of
-S*(ar), namely L%(x), Lg(x), &c., of the form (10) if m is even

and - values if m is odd.

By interchanging b and c in
(8), (9), and (10) we may show that if

33r-* + &quot;*-***-*+ ] (11)

there are ^ values of E(x), namely M(x), M(x), M(x), &c., of the form
I &quot;I

(11) if m is even and - values if m is odd.

Finally if in Lame s Equation (5) we let z = vV(x? b*)(x
2 c2

) we get

-
[(m + 3)(m

-
2)x*

-
(b* + C2)(p

-
1)&amp;gt;

= 0. (12)

If now we let v = ^akx
k we obtain the relation

\k(k + 5)
-

(m
-

2)(m + 3)] 4

2) (A; + 4) + 1 -p-]ak + 2 + W(* + 3)(A + 4) a/t+4
= 0. (13)

Proceeding as before we find that there are values sl} s2 &amp;gt;

s
s&amp;gt;

&c
-j

of p

for which v = xm ~*-\- am_xm ~*
-\- am_ 6 x

m~ 6
-{-

----
\- a if m is even, and

m
values for which v = xm

~ 2
-\- am_ 4 x

m~ 4+ ----
\- a-^x if m is odd.

Calling v\(x
2

b-)(x
2 c2

) N*(x) so that

terminating with a if m is even and with a^x if m is odd, we have values

x), namely N%(x), 2

values if m is odd.

of E(x), namely N(x), -#(#), N%(x), &c., of the form (14) if m is even and
-rw - &quot;1
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Summing up our results we see that there are 2m+1 Ellipsoidal Harmonics

JE(x) each of which is a finite sum of the mth degree in x, or in x and \lx
z b

z
,

or in x and \jx
z c

2
,
or in x and Y#2 b

2 and Y^2
&amp;lt;?.

It was proved by Lame that the 2m + 1 values of p, namely 7^, pt , ps , &c.,

qi , j8 , q &c., r r,, rs , &c., *, s2 , 8 , &c., were all real, and by Liouville that

they were all different.

We give tables of the Ellipsoidal Harmonics for m = 0, m = 1, m = 2, and

m = 3. The coefficients were obtained by the aid of formulas (6), (9),

and (13).

L,(x) =0
Jf (aj)=0

c
2 + V(6

2 + c
2

)
2 -

c
2

)
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It is to be noted that since in the solution (4) of Laplace s Equation,

we have the same m and^? in each of the three factors, we shall have to deal

merely with products made up of factors of the same form, for example,

K\X)K*\n)K*\V), L \\)L&amp;lt;*(tiL?(v), &c.;

and that in a solution of the form

we shall have for a given m just 2m + 1 terms.

138. From the particular solution of Lame s Equation [(5) Art. 137]
z=

25*(jc),
we can get by formula (5), Art. 18, the general solution.

It is z = AE*(x) + BEXx) I . =--
(1)

&amp;gt;

Making A= and B = 2m + 1 we get a second form of particular solution of

Lame s Equation, z = F&(x) where
oo

/nor_,_
We shall call F*(x) a Lame s Function of the second kind.

It is easily seen to approach the value zero as x is indefinitely increased.

EXAMPLES.

1. If an ellipsoidal conductor is charged with electricity, and is found to

be at potential VQ ,
show that since FJ&amp;gt;= JVf (A),

V=

at an internal point, and

t

dx

KWJ -a-

rrr **

LJ V(*
- ^( - o2

) -, sin-
c
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whence v. (10) Art. 136.

2. Find the value of the potential function at an external point due to the

attraction of a solid homogeneous ellipsoid (v.
Art. 135).

Observe that

(P
-

and that
-H2

)
2 -

where M is the mass of the ellipsoid.

dx
Ans. V-*{fjg=

r ax

f . 1 } .

*2 - ^2 ^2- c.Jaj J &amp;gt;

139. If for the sake of brevity we represent
-
by k, and (l

-

2 ) by k in
c \ c

the formulas (11) Art. 136 we have

dn a , , , b T , , x
^

,

and from these we get without difficulty (v. Int. Cal. Art. 192)

r-z r ck . /s TO bk sn 8

en a (mod k)

i? = b en y (mod k),
=

cna v

-^= -
(
mod A

)&amp;gt;

c
2 - i^ = c dn y (mod A).
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If we let a range from to K, and ft from to 2K
,
and y from to 47T,

where K and K are the complete Elliptic Integrals F\k^\ and

respectively, (a, ft y) may represent any point in space, and there will be no

ambiguity in sign (v.
Art. 136).

We may note that if
0&amp;lt;fi&amp;lt;K ,

z is positive; if K
&amp;lt;(3&amp;lt;2K ,

z is

negative; if
0&amp;lt;y &amp;lt;K, x and y are both positive; if

K&amp;lt;y&amp;lt;2K,
x is

positive and y negative ;
if 2K&amp;lt; y &amp;lt; 3K, x and y are both negative ;

and if

3K&amp;lt; y &amp;lt; 4
A&quot;,

x is negative and y positive (v.
Art. 136).

We can write the values in (4), (5), (6),
and (7),

Art. 136, more neatly by

bringing in a, ft and y. We get

(3)

(4)

dv =-
8 (A

2 -
/*

2
) (X

2- v2)O2-
v&amp;gt;) dadftdy. (5)

Tor the integral of any function of a, fi, and y over the ellipsoid a = a
,
we

shall have
2 A&quot; 4K

JV(a,A y)dS= fd(]j&amp;gt;(a
, ft y)&amp;lt;&amp;gt;

2 - v
2)^2 -

/,
2

)(X
2 - v

2

)^.- (6)

o o

140. If we make use of the formula (2) Art. 92

V- VDn U)dS=0 (1)

and take as our closed surface any given ellipsoid, we can get a very important

result.

If U=E\}EPl tiE(v) and V=

and J^n * ^a ^n~ ~H Vrv~n \- / J^
^ 2 _ x

,^
2_ ^2\

UDn V- VDn U
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Integrating UDn V FDn /7over the whole ellipsoid, and writing the result

equal to zero, we have

IK 4K

Hence dpE*(fiE*(v)E*(p)E!(v) (p?
-

S)dy = (2)

)-^) = 0-
(3)

But as our ellipsoid may be taken at pleasure, A. and a are unrestricted, and
if (3) is true it must be true identically.

If we divide (3) by [^(X)]
2
it becomes

and this obviously cannot be true unless n = m and q=p.

EXAMPLES.

1. Show that it follows from (2) Art. 140 that

X X

I dft I E^(/Ji^E^(i/)E^(fjC)E^(v)(iJ,
2 v2

)dy = 0.

K K

Suggestion :

2X K

2K

-
v*) dp.

If in the last integral we replace ft by (3 + 2^C it becomes

X

v. Arts. 136 and 139 and Int. Cal. Art. 196.

2. Show that

ZK 4X X 1 K

V?)dy
= 8 I (
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141. We can now solve the problem of finding the value of Fat any point

in space when it is given at all the points on the surface of the ellipsoid

a = a .

We have first to develop in. Ellipsoidal Harmonics a function of /x and v or

rather of a and (3 given at all points on the surface of the ellipsoid in question;

and this is now easily accomplished by our usual method, which leads us to

the result

, A
where 4^ =-^ ^- --

(2)

Our final solution is

OT=0

at an internal point;

at an external point.

Lame* has proved rather ingeniously that

K-

can always be found and that it is equal to multiplied by a rational integral

/b\
2

function of the coefficients of JCt
(x)and of c

2 and (-1\c/

Of course the labor of obtaining even a few terms of the development of a

function that is in the least complicated is enormous.

142. If in Laplace s Equation (8) Art. 136 we let V=El(X)U supposing

U to be a function of ft and y only, we get after replacing -j^

by its value m(m + 1)X
2 -

(b* + c?)p [v. (2) Art. 137]

(X
2- it)DlU+ (X

2 -
n*)D* U+(fJL*- i?)[m(m + l)Xf

-
(&

2 + c
2

)^] ?7= ; (1)
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and since by hypothesis U is independent of X, the coefficient of X2 in (1)

must vanish. Hence

D}U+ !&amp;gt;;&+ (I*
-

&quot;X

Of course U=^ E^E^v) will satisfy (2).

EXAMPLES.

1. Substitute U= E&(n)E*(v) in (2) Art. 142 and by the aid of (2) Art. 137

show that the equation (2) Art. 142 is satisfied.

2. Obtain (2) Art. 140 directly from (2) Art. 142.

3. Conical Coordinates. Consider the system of coordinates defined by the

equations

- (?

=
(1)

where c
2

&amp;gt; ^ &amp;gt; b
2

&amp;gt; i/
2
.

Show that

,_
&quot;

Laplace s Equation is

(2)
^ , &quot; ,

where a=

If V=U.R (2) breaks up into

m(m + 1)(^
2 -

z/
2

) ?7= 0. (4)

(3) gives R = Arm + Br~ m~\

(4) gives U=EP(fJL)fip(v) (v.
Art. 142).

So that a solution of (2) is

But since (2) is Laplace s Equation, V=ArmYm(p, &amp;lt;f&amp;gt;),

if expressed in

Conical Coordinates, must satisfy it, consequently E&(i*)]S*(v) must be simply
a Spherical Harmonic of the rath degree.
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Toroidal Coordinates.

143. Any pair of circles belonging to the orthogonal system obtained and

figured in Art. 46 can be represented by the equations

2ax =
sinh a

2ay =
sin fi

cosh a

cos j3

if we take 2a instead of 2 as the distance between the points common to the

second set of circles.

If we rotate the system about the axis of y we get a set of spheres and a

set of anchor rings which cut orthogonally. These and a set of planes through

the axis of revolution will form an orthogonal system of surfaces, and the

parameters corresponding to them may be taken as a set of curvilinear

coordinates and may be called Toroidal Coordinates.

If we take the axis of the system as the axis of Z, the equations of a set of

the surfaces may be written

) I&quot;*

2 + if + *2 + a2

sinh2 a cosh2 a

2az x* +
sin (3

cos

(2)

y x tan y

a, ft,
and y being regarded as the coordinates of a point of intersection of the

three surfaces.

Finding Laplace s Equation in the usual manner we get

a sinh a cos y
X =

cosh a if cos

a sinh a sin y
&quot;

a sinh a

^
&quot;coshaqicos/s

a sin ft

cosh a ip
cos (3

a cosh a

cosh arc cos cosh a q: cos ft

*!=- f- A2
-

a

and Laplace s Equation becomes

asinha

coshaqrcosff
asinha



CHAP. VIII.] TOROIDAL HAKMONICS. 265

A(ri&amp;gt;. V) + D#Dt V) + rrDSV= 0.
(2)

We cannot proceed further by our usual method, for the assumption that V
is a function of a alone, or that V is a function of ft alone, proves to be

inadmissible. Indeed, not only are a, ft,
and y not thermometric parameters

(v.
Art. 133), but no thermometric parameters exist, and no possible distribu

tion can make our anchor rings or our spheres a set of equipotential surfaces.

We can, however, simplify (2).
It can be written

l\fr+ D$lr proves equal to .

*

5 hence if 7= FY^* (3) becomes

sinh2

a(DlU+ D\ U) + D*U+$U=0, (4)

for which particular solutions can readily be found by our usual process.

(4) can be broken up into the three equations

o (5)

(6)

sinh2 a^-
[m(m + 1) + rc

2 sinh2
a] = 0. (7)

N= A cos(m + )y + -B sin(m + $)y

M= AI cos n/8+ J?i sin ?i^.

If we introduce into (7) x = etnh a it becomes

solution of which is

i= P; (a!)
=

(1
- x2

)
1^^ (T- Art. 102).

It is to be noted that since ctnh a is greater than 1
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The constant coefficient i2 can be rejected and we get

U= [A cos(m+ fr)y+ B sin(m+ fr)y] (A, cos nft+ Bv sin n

as a particular solution of (4).

has been called a Toroidal Harmonic.

(d

EXAMPLES.

1. Given the value of the potential function at all points on the surface of

an anchor ring ;
find its value at any point within the ring.

Suggestion: If F=/(/?, y) when a= a , the function to be developed is

and the development will be in a double Fourier s Series (v. Art. 71).

2. Show that if we let a range from to oo, ft from TT to TT, and y from

to 2-Tr, each of the double signs on page 264 may be replaced by the minus

sign without loss of generality.



CHAPTER IX.*

HISTORICAL SUMMARY.

The method of development in series which has enabled us in the preceding

chapters to solve problems in various branches of mathematical physics, had

its origin, as might have been expected, in the theory of the musical vibrations

of a stretched string. It was in the year 1753 l that Daniel Bernoulli

enunciated the principle of the coexistence of small oscillations, which, in

connection with Taylor s and John Bernoulli s theory of the vibrating string,

led him to believe that the general solution of this problem could be put in

the form of a trigonometric series. This principle also led him and Euler to

treat in a similar manner the problems of the vibration of a column of air and

of an elastic rod. The problem of the vibration of a heavy string suspended
from one end was also treated in the same manner by these mathematicians

and deserves special mention here as in it Bessel s functions of the zeroth

order appear for the first time. 2 In none of these cases, however, was any
method given for determining the coefficients of the series.

This last remark also applies to the more complicated problems of the

vibration of rectangular and circular membranes, which were discussed by
Euler 8 in 1764, and in the last of which the general Bessel s functions of

integral orders occur.

It is in problems connected with astronomy that the first completely
successful application of the method here considered occurs. Legendre in a

paper published in the Memoires des Savants Etrangers for 1785, first

introduced the zonal harmonics Pm and applied them to the determination of

the attraction of solids of revolution. He was followed by Laplace, who in

one of the most remarkable memoirs ever written 4 determined the potential

of a solid differing but little from a sphere by means of the development

according to the spherical harmonics Ym .

1 See two articles by Bernoulli and one by Euler in the Memoirs of the Academy of

Berlin for this year.
2 See the Transactions of the Academy of St. Petersburg for 1732-33, 1734 and 1781.

8 Transactions of the Academy of St. Petersburg.
4 &quot;Th^orie des attractions des sphe&quot;roides et de la figure des Planetes&quot; Memoires de

1 academic des sciences 1782. This article, although bearing an earlier date than that of

Legendre, was really inspired by it. It is here that &quot;Laplace s equation&quot; first appears,

occurring, however, only in polar coordinates.

* See preface.
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published simultaneously two papers in which they arrived independently of

each other at about the same results. In each of these papers attention is

called to the fact that the product of two Lame s functions is a spherical

harmonic, and this fact is made use of to throw Lamp s solution of the

problem of the permanent state of temperatures of an ellipsoid into a more

elementary form. Besides this the second solution of Lame s equation is

introduced for the sake of solving the potential problem for the exterior of

the ellipsoid.

In thus following up the theory of heat and the related potential problems,
we have lost sight of the question of small vibrations, to which during the

early part of the century a great deal of attention had been devoted by

Poisson, who frequently made use of the method of development in series.

In his memoirs l most of the problems left unfinished by Bernoulli and Euler

are thoroughly treated, as well as various slight modifications of them.

When, however, he attacked the problem of the vibration of an elastic plate

he was unable to make much progress, owing in part to the erroneous form of

his boundary conditions. He was, nevertheless, able to solve the problem of

the symmetrical vibration of a free circular plate. The complete theory of the

vibration of a free circular plate was first given by Kirchhoff. 2

Passing now to a new subject, the theory of the equilibrium of an elastic

spherical shell, we find a solution by Lams in Liouville s Journal for 1854,

and by Sir William Thomson (1862) in the Philosophical Transactions for

1863. Both of these papers consist of an application of the spherical-harmonic

analysis to this rather complicated problem. Thomson, however, considers

besides Lame s problem certain related questions and the form of his analysis

is very different from Lame s, being of the same nature as that used in the

Appendix B of his Natural Philosophy of which we shall have to speak

presently. These investigations form the starting point for a number of

recent memoirs among which those of G. H. Darwin on cosmographical

questions deserve special mention.

Closely related to this last mentioned problem is the theory of the small

vibrations of an elastic sphere. While the simplest case of this problem was

treated by Poisson in the memoir referred to a.bove, the general solution has

been only recently obtained by Jaerisch (1879)
3 and Lamb (1882).

4 The

functions involved are the same as those which occur in the problem of the

non-stationary flow of heat in a sphere as solved by Laplace.

The Appendix B of Thomson and Tait s Natural Philosophy,
6 to which we

have already referred, deserves to be regarded as one of the most important

1 See especially the one in the Me&quot;moires de 1 academie des sciences, Vol. VIII., 1829.

2 Crelle s Journal, Vol. 40, 1850. 8 Crelle s Journal, Vol. 88.

* Proc. Lond. Math. Soc.
6 First edition, 1867. This appendix

was evidently written as early as 1862, as Thomson refers to it in the memoir quoted above.
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contributions to the general theory. The way in which spherical harmonics

are introduced (as homogeneous functions of the rectangular coordinates) was

then new,
1 and the solution of the potential problem for a variety of new

solids was indicated
; viz., for solids whose boundaries consist of concentric

spheres, cones of revolution, and planes. We shall have more to say presently

concerning the method employed for the solution of these problems.

Although connected only indirectly with the theory we are discussing, it

will be well to mention at this point the method of electrical images which is

also due to Sir William Thomson (1845). This method enables us to solve

many potential problems for the inverse of any solid when once we have

solved it for the solid itself. By means of this method most of the solutions

of potential problems obtained by our method may be applied at once with

very little modification to systems of curvilinear coordinates derived by
inversion from those we have used. It will not be necessary to mention

separately problems of this sort, as it is clearly immaterial whether they be

solved directly or by means of the method of inversion.2

Returning now to the Continent, we find as the next important question

taken up the problem of the potential of an anchor ring. The first publication

on this subject is a monograph by C. Neumann 8

(1864), but in Riemann s

posthumous papers which were not published until 1876, ten years after his

death, will be found a short fragment on this subject, which (cf. the last page
of Hattendorf s edition of Riemann s lectures :

&quot; Partielle Differentialglei-

chungen &quot;)
would appear to date back to the winter 1860-61. This fragment

is of peculiar interest, as the opening paragraphs clearly show that Riemann
had in mind an extended article on the fundamental principles of our subject.

We will next mention two papers by Mehler in which the functions known
as &quot; conal harmonics,&quot; which had already been introduced by Thomson in the

Appendix B above mentioned, were applied to the solution of two problems in

electrostatics. The first of these papers
4

(1868) deals with the solid bounded

by two intersecting spheres, while in the second 5

(1870) the infinite cone of

revolution is treated. Both of these problems are essentially different from

those discussed in the &quot;

Appendix B,&quot;
inasmuch as the infinite series which

we usually have degenerate in these cases into definite integrals, just as they
do in some simpler cases treated by Fourier. The later of the two papers

just quoted also contains valuable information concerning the nature of the

1 The same method was used at about the same time by Clebsch.

2 A case in point would be the potential problem for the shell between two non-intersecting

eccentric spheres, since these spheres can be inverted into concentric spheres. This problem,
was treated directly by C. Neumann in a monograph published in Halle in 1862.

8 &quot; Theorie der Elektricitats- und Wanne-Vertheilung in einem Hinge.&quot; Halle.

* Crelle s Journal, Vol. 68, 1868.

5 Jahresbericht des Gymnasiums zu Elbing.
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solution of similar problems for the hyperboloids and paraboloids of revolu

tion. The solutions of these problems are not, however, given.

It remains, in order to close the history of this part of the subject, to mention

a number of memoirs which although treating entirely new problems are of far

less importance than most of those considered up to this point, partly because

the solution is not brought to a point where it can be of much immediate use,

and partly because most of the methods employed are such as could not fail

to present themselves to any one attacking these problems.

Of these the first is a paper by Mathieu 1 on the vibration of an elliptic

membrane (1868), in which the functions of the elliptic cylinder occur for the

first time.

This was followed in the same year by a paper on closely allied subjects by
H. Weber,

2 in which not merely the case of the complete ellipse is briefly

considered, but also that in which the boundary consists of two arcs of

confocal ellipses and two arcs of hyperbolas confocal with them. The special

case in which the ellipses and hyperbolas become confocal parabolas is also

considered, whereby the functions of the parabolic cylinder are for the first

time introduced.

In Mathieu s &quot;Cours de physique mathematique
&quot;

(1873) the problem of

the non-stationary flow of heat in an ellipsoid is touched upon, and an

elaborate though not very satisfactory treatment of the special cases where

we have ellipsoids of revolution is given. New functions appear in all of

these problems.

Of late years C. Baer has supplied a number of missing links in the chain

of problems here considered by treating in succession the potential problem
for the paraboloid of revolution,

3 the parabolic cylinder
4 and the general

paraboloid.
5 In the first of these problems Bessel s functions occur, as had

already been stated by Mehler, while in the last we find the functions of the

elliptic cylinder. For each of the three systems of coordinates employed the

same author also touches upon the more general problem of the non-stationary

flow of heat, in which new functions occur.

Except in the case of the anchor ring we have found so far only such solids

treated by our method as are bounded by surfaces of the first or second

i Liouville s Journal, Vol. XIII.

2 &quot;Ueber die Integration der partiellen Differentialgleichung -f ^ + Tchi = 0.&quot;

Math. Ann., Vol. I. No physical problem is mentioned in this paper.
3 &quot;Ueber das Gleichgewicht und die Bewegung der Warme in einem Rotationspara-

boloid.&quot; Dissertation, Halle, 1881.

4
&quot;Die Funktion des parabolischen Cylinders,&quot; Gymnasialprogramm Custrin, 1883.

5 &quot; Parabolische Coordinate!!,&quot; Frankfurt, 1888. See also a paper by Greenhill in the

Proc. Lond. Math. Soc., Vol. XIX., 1889 (read Dec. 8, 1887). Also a posthumous paper by

Lam6 in Liouville s Journal for 1874, Vol. XIX.
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degree. Wangerin
1

(187&-76) considered in connection with the theory of

the potential, more general systems of curvilinear coordinates than had

previously been used in physical questions, namely, cyclidic coordinates. 2 He

showed, however, merely how to break up Laplace s equation into three

ordinary differential equations.
8

An important branch of our theory which we have not yet touched upon
dates back to the year 1836, when Sturm published a series of fundamentally

important papers in the first two volumes of Liouville s Journal. The

physical question which lies at the basis of these papers is the problem of the

flow of heat in a heterogeneous bar. 4 The method here employed depends

upon the fact that the functions which occur are characterized by the number

of times they vanish in a certain interval. This same idea reappears in

Thomson and Tait s Appendix B already referred to, but first finds its full

expression in this more general field of the three dimensional potential in an

article by Klein :
&quot; Ueber Korper welche von confocalen Flachen zweiten

Grades begrenzt sind&quot;
5

(1881). Still more recently (1889-90) Klein has in

his lectures extended this theory to the treatment of solids bounded by six

confocal eyelids, and has indicated how all the potential problems heretofore

treated by our method are special cases of this one.6

Of late years, especially since the year 1880, the younger English mathe

maticians have done a vast amount of work in the theory we are here

considering. Although much of this work is of great value, hardly any of it

can be regarded as being a real development of the method
;

it is rather an

application of it to a great variety of problems. We must therefore content

ourselves with giving a mere list of a few of the more important of these

papers.

Niven: On the Conduction of Heat in Ellipsoids of Revolution. Phil.

Trans., 1880.

Niven: On the Induction of Electric Currents in Infinite Plates and

Spherical Shells. Phil. Trans., 1881.

1 Preisschriften der Jablanowski schen Gesellschaft, No. XVIII., and Crelle s Journal,
Vol. 82. See also, concerning a still further extension, the Berliner Monatsberichten

for 1878.

2
Cyclids are a kind of surface of the fourth order (see Salmon s Geom. of three Dimen

sions, p. 527). In his first memoir Wangerin considers only eyelids of revolution.
8 See also a paper by this author in Griinert s Archiv for 1873, where the problem of the

equilibrium of elastic solids of revolution is treated.

4 The similar problem of the vibration of a heterogeneous string under the action of an
external force was treated by Maggi (Giornale di Matematiche, 1880). Several special cases

are also considered here in detail.

5 Math. Ann., 18.

6 For an exposition of this theory see the treatise : Ueber die Keihenentwickelungen der

Potentialtheorie, Leipsic, Teubner, 1894, by the writer of the present chapter.
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Hicks : On Toroidal Functions. Phil. Trans., 1881.

Hicks : On the Steady Motion and Small Vibrations of a Hollow Vortex.

Phil. Trans., 1884, 1885.

Lamb: On Ellipsoidal Current Sheets. Phil. Trans., 1887.

Chree: The Equations of an Isotropic Elastic Solid in Polar and Cylin
drical Coordinates, their Solution and Application. Camb. Phil. Soc. Trans.,

XIV., 1889.

Hobson: On a Class of Spherical Harmonics of Complex Degree with

Applications to Physical Problems. Camb. Phil. Soc. Trans., XIV., 1889.

Chree: On some Compound Vibrating Systems. Camb. Phil. Soc. Trans.,

XV., 1891.

Niven: On Ellipsoidal Harmonics. Phil. Trans., 1892.

The historical sketch we have just given would naturally require as a

supplement some account of the work that has been done on the question of

the convergence of the various series which occur. This, however, would

carry us too far, and we will content ourselves witn mentioning the two

fundamental memoirs by Dirichlet in Crelle s Journal, one in 1829 on

Fourier s series, and one, which has been criticised to some extent by subse

quent mathematicians, in 1837 on Laplace s spherical harmonic development.

Another subject which naturally presents itself here is the theory of the

various new functions we have met. Those properties of these functions,

however, which the physicist needs have usually been investigated by the

physicists themselves in the papers mentioned above
;

while any thorough

account of the development of the theory of these functions would lead us

into the vast region of the modern theory of linear differential equations.

We will therefore close by merely giving a list of books which will be

found useful by those wishing to continue their study of the subject further.

We begin with the books relating directly to physical questions :

Fourier : Theorie Analytique de la Chaleur, 1822.

Lame : Leqons sur les Fonctions inverses des Transcendantes et les Surfaces

isothermes, 1857.

Lame: Lemons sur les Coordonnees Curvilignes et leurs diverses Applica

tions, 1859.

Mathieu : Cours de Physique Mathematique, 1873.

Riemann: Partielle Differentialgleichungen, und deren Anwendung auf

physikalische Fragen (edited by Hattendorf), third edition, 1882.

F. Neumann : Theorie des Potentials und der Kugelfunktionen (edited by

C. Neumann), 1887.

Thomson and Tait : Natural Philosophy, second edition, 1879.

Raijleigh : Theory of Sound, 1877.

Basset: Hydrodynamics, 1888.

Love : Theory of Elasticity, 1892.
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Heine : Handbuch der Kugelfunktionen (second edition), 1878-81.

Ferrers: Spherical Harmonics, 1881.

.ffaentzschel : Reduction der Potentialgleichung auf gewohnliche Differential-

gleichungen, 1893.

These last three books would also belong in the following list of books

relating to the theory of the various functions we use :

Todhunter : The Functions of Laplace, Lame and Bessel, 1875.

Lommel: Studien liber die Bessel schen Funktionen, 1868.

F. Neumann: Beitrage zur Theorie der Kugelfunktionen, 1878.

And finally concerning the question of convergence :

C. Neumann: Uber die nach Kreis-, Kugel- und Cylinder-Functionen
fortschreitenden Entwickelungen, 1881.





APPENDIX.

TABLES.

Table I., a table of Surface Zonal Harmonics (Legendrians), gives the valuec

of the first seven Harmonics Pl (cos 0), P2 (cos ff),
P7 (cos 0) for the argument

in degrees. It is taken from the Philosophical Magazine for December,

1891, and was computed by Messrs. C. E. Holland, V. R. James, and C. G.

Lamb, under the direction of Professor John Perry.

Table II., a table of Surface Zonal Harmonics (Legendrians), gives the

values of the first seven Harmonics Pl (x),
P2 (#),

- P~ (x) for the argument x.

It is reduced from the Tables of Legendrian Functions computed under the

direction of Dr. J. W. L. Glaisher, and published in the Report of the British

Association for the Advancement of Science for the year 1879.

Table III., the table of Hyperbolic Functions, gives the values of ex
,
e~ x

,

smhx, coshcc, and gdx (Gudermannian of x) for values of x from 0.00 to 1.00;

and the values of log sinh x and log cosh # for values of x from 1.00 to 10.0.

The values of gd x, log sinh x, and log cosh x are taken from the Mathematical

Tables prepared by Professor J. M. Peirce (Boston: Ginn & Co.).

The log sinh x and log cosh x for values of x between 0.00 and 1.00 can be

obtained from the values given for the Gudermannian of x in the table by the

aid of the relations

log sinh x = log tan (gd x}

log cosh x = log sec (gd x).

Table IV. gives the first twelve roots of JQ (x) and J^ (x)
= each

divided by IT. The table is taken from Lord Rayleigh s Sound, Vol. L,

page 274, and is due to Professor Stokes, Camb. Phil. Trans., Vol. IX.,

page 186.

Table V. gives the first nine roots of J (x)
=

0, J (x)
=

0, J5 (x)
= 0.

The table is taken from Rayleigh s Sound, Vol. L, page 274, and is due to

Professor J. Bourget, Ann. de PEcole Normale, T. III., 1866, page 82.

Table VI., the table of Bessel s Functions, gives the values of the Bessel s

Functions JQ (x) andJ^cc) for the argument x from x = to x = l5. It is

taken from Rayleigh s Sound, Vol. L, page 265, and from LommeFs Bessel sche

Functionen.
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MATHEMATICS-INTERMEDIATE TO ADVANCED

General

INTRODUCTION TO APPLIED MATHEMATICS, Francis D. Murnaghan. A practical and thoroughly
sound introduction to a number of advanced branches of higher mathematics. Among the
selected topics covered in detail are: vector and matrix analysis, partial and differential

equations, integral equations, calculus of variations, Laplace transform theory, the vector
triple product, linear vector functions, quadratic and bilinear forms, Fourier series, spherical
harmonics, Bessel functions, the Heayiside expansion formula, and many others. Extremely
useful book for graduate students in physics, engineering, chemistry, and mathematics.
Index. Ill study exercises with answers. 41 illustrations, ix + 389pp. 53/8 x 8Vi.

S1042 Paperbound $2.25

OPERATIONAL METHODS IN APPLIED MATHEMATICS, H. S. Carslaw and J. C. Jaeger. Explana
tion of the application of the Laplace Transformation to differential equations, a simple and
effective substitute for more difficult and obscure operational methods. Of great practical
value to engineers and to all workers in applied mathematics. Chapters on: Ordinary Linear
Differential Equations with Constant Coefficients;; Electric Circuit Theory; Dynamical Appli
cations; The Inversion Theorem for the Laplace Transformation; Conduction of Heat; Vibra
tions of Continuous Mechanical Systems; Hydrodynamics; Impulsive Functions; Chains of
Differential Equations; and other related matters. 3 appendices. 153 problems, many with
answers. 22 figures, xvi + 359pp. 5% x 8V2. S1011 Paperbound $2.25

APPLIED MATHEMATICS FOR RADIO AND COMMUNICATIONS ENGINEERS, C. E. Smith. No
extraneous material here! only the theories, equations, and operations essential and im

mediately useful for radio work. Can be used as refresher, as handbook of applications and

tables, or as full home-study course. Ranges from simplest arithmetic through calculus, series,
and wave forms, hyperbolic trigonometry, simultaneous equations in mesh circuits, etc.

Supplies applications right along with each math topic discussed. 22 useful tables of func

tions, formulas, logs, etc. Index. 166 exercises, 140 examples, all with answers. 95 diagrams.
Bibliography, x + 336pp. 53/8 x 8. S141 Paperbound $1.75

Algebra, group theory, determinants, sets, matrix theory

ALGEBRAS AND THEIR ARITHMETICS, L. E. Dickson. Provides the foundation and background
necessary to any advanced undergraduate or graduate student studying abstract algebra.

Begins with elementary introduction to linear transformations, matrices, field of complex
numbers; proceeds to order, basal units, modulus, quaternions, etc.; develops calculus of

linears sets, describes various examples of algebras including invariant, difference, nilpotent,

semi-simple. &quot;Makes the reader marvel at his genius for clear and profound analysis,&quot; Amer.

Mathematical Monthly. Index, xii + 241pp. 53/8 x 8. S616 Paperbound $1.50

THE THEORY OF EQUATIONS WITH AN INTRODUCTION TO THE THEORY OF BINARY ALGEBRAIC

FORMS, W. S. Burnside and A. W. Panton. Extremely thorough and concrete discussion of the

theory of equations, with extensive detailed treatment of many topics curtailed in later texts.

Covers theory of algebraic equations, properties of polynomials, symmetric functions, derived

functions, Horner s process, complex numbers and the complex variable, determinants and

methods of elimination, invariant theory (nearly 100 pages), transformations, introduction to

Galois theory, Abelian equations, and much more. Invaluable supplementary work for modern
students and teachers. 759 examples and exercises. Index in each volume. Two volume set.

Total of xxiv + 604pp. 53/8 x 8. S714 Vol I Paperbound $1.85
S715 Vol I! Paperbound $1.85

The set $3.70

COMPUTATIONAL METHODS OF LINEAR ALGEBRA, V. N. Faddeeva, translated by C. D. Benster.

First English translation of a unique and valuable work, the only work in English present

ing a systematic exposition of the most important methods of linear algebra classical

and contemporary. Shows in detail how to derive numerical solutions of problems in mathe

matical physics which are frequently connected with those of linear algebra. Theory as well

as individual practice. Part I surveys the mathematical background that is indispensable
to what follows. Parts II and III, the conclusion, set forth the most important methods

of solution, for both exact and iterative groups. One of the most outstanding and valuable

features of this work is the 23 tables, double and triple checked for accuracy. These tables

will not be found elsewhere. Author s preface. Translator s note. New bibliography and

index, x + 252pp. 53/8 x 8. S424 Paperbound $2.00

ALGEBRAIC EQUATIONS, E. Dehn. Careful and complete presentation of Galois theory of alge

braic equations; theories of Lagrange and Galois developed in logical rather than historical

form, with a more thorough exposition than in most modern books. Many concrete applica

tions and fully-worked-out examples. Discusses basic theory (very clear exposition of the

symmetric group); isomorphic, transitive, and Abelian groups; applications of Lagrange s and

Galois theories; and much more. Newly revised by the author. Index. List of Theorems,

xi + 208pp. 53/8 x 8. S697 Paperbound $1.45
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ALGEBRAIC THEORIES, L. E. Dickson. Best thorough introduction to classical topics in higher
algebra develops theories centering around matrices, invariants, groups. Higher algebra,
Galois theory, finite linear groups, Klein s icosahedron, algebraic invariants, linear trans

formations, elementary divisors, invariant factors; quadratic, bi-linear, Hermitian forms,

singly and in pairs. Proofs rigorous, detailed; topics developed lucidly, in close connection
with their most frequent mathematical applications. Formerly &quot;Modern Algebraic Theories.&quot;

155 problems. Bibliography. 2 indexes. 285pp. 5% x 8. S547 Paperbound $1.50

LECTURES ON THE ICOSAHEDRON AND THE SOLUTION OF EQUATIONS OF THE FIFTH DEGREE,
Felix Klein. The solution of quintics in terms of rotation of a regular icosahedron around its

axes of symmetry. A classic & indispensable source for those interested in higher algebra,

geometry, crystallography. Considerable explanatory material included. 230 footnotes, mostly
bibliographic. 2nd edition, xvi + 289pp. 53/8 x 8. S314 Paperbound $2.25

LINEAR GROUPS, WITH AN EXPOSITION OF THE GALOIS FIELD THEORY, L. E. Dickson. The
classic exposition of the theory of groups, well within the range of the graduate student.
Part I contains the most extensive and thorough presentation of the theory of Galois Fields

available, with a wealth of examples and theorems. Part II is a full discussion of linear

groups of finite order. Much material in this work is based on Dickson s own contributions.
Also includes expositions of Jordan, Lie, Abel, Betti-Mathieu, Hermite, etc. &quot;A milestone
in the development of modern algebra,&quot; W. Magnus, in his historical introduction to this

edition. Index, xv + 312pp. 53/a x 8. S482 Paperbound $1.95

INTRODUCTION TO THE THEORY OF GROUPS OF FINITE ORDER, R. Carmichael. Examines funda
mental theorems and their application. Beginning with sets, systems, permutations, etc., it

progresses in easy stages through important types of groups: Abelian, prime power, per
mutation, etc. Except 1 chapter where matrices are desirable, no higher math needed. 783

exercises, problems. Index, xvi + 447pp. 5% x 8. S300 Paperbound $2.25

THEORY OF GROUPS OF FINITE ORDER, W. Burnside, First published some 40 years ago,
this is still one of the clearest introductory texts. Partial contents: permutations, groups
independent of representation, composition series of a group, isomorphism of a group with

itself, Abelian groups, prime power groups, permutation groups, invariants of groups of linear

substitution, graphical representation, etc. 45pp. of notes. Indexes, xxiv + 512pp. 5% x 8.

S38 Paperbound $2.75

CONTINUOUS GROUPS OF TRANSFORMATIONS, L. P. Eisenhart. Intensive study of the theory and

geometrical applications of continuous groups of transformations; a standard work on the

subject, called forth by the revolution in physics in the 1920 s. Covers tensor analysis,
Riemannian geometry, canonical parameters, transitivity, imprimitivity, differential invariants,
the algebra of constants of structure, differential geometry, contact transformations, etc.

&quot;Likely to remain one of the standard works on the subject for many years . . . principal
theorems are proved clearly and concisely, and the arrangement of the whole is coherent,&quot;

MATHEMATICAL GAZETTE. Index. 72-item bibliography. 185 exercises, ix + 301pp. 53/8 x 8.

S781 Paperbound $2.00

THE THEORY OF GROUPS AND QUANTUM MECHANICS, H. Weyl. Discussions of Schroedinger s

wave equation, de Broglie s waves of a particle, Jordan-Hoelder theorem, Lie s continuous

groups of transformations, Pauli exclusion principle, quantization of Maxwell-Dirac field

equations, etc. Unitary geometry, quantum theory, groups, application of groups to quantum
mechanics, symmetry permutation group, algebra of symmetric transformation, etc. 2nd
revised edition. Bibliography. Index, xxii + 422pp. 5 3/s x 8. S269 Paperbound $2.35

APPLIED GROUP-THEORETIC AND MATRIX METHODS, Bryan Higman. The first systematic
treatment of group and matrix theory for the physical scientist. Contains a comprehensive,

easily-followed exposition of the basic ideas of group theory (realized through matrices) and
its applications in the various areas of physics and chem.stry: tensor analysis, relativity,

quantum theory, molecular structure and spectra, and Eddington s quantum relativity.

Includes rigorous proofs available only in works of a far more advanced character. 34

figures, numerous tables. Bibliography. Index, xiii + 454pp. 5% x 8 3/s.

S1147 Paperbound $3.00

THE THEORY OF GROUP REPRESENTATIONS, Francis D. Murnaghan. A comprehensive intro

duction to the theory of group representations. Particular attention is devoted to those

groups mainly the symmetric and rotation groups which have proved to be of funda
mental significance for quantum mechanics (esp. nuclear physics). Also a valuable contribu

tion to the literature on matrices, since the usual representations of groups are groups of

matrices. Covers the theory of group integration (as developed by Schur and Weyl), the

theory of 2-valued or spin representations, the representations of the symmetric group, the

crystallographic groups, the Lorentz group, reducibility (Schur s lemma, Burnside s Theorem,
etc.), the alternating group, linear groups, the orthogonal group, etc. Index. List of refer

ences, xi + 369pp. 53/8 x 8V2. S1112 Paperbound $2.35

THEORY OF SETS, E. Kamke. Clearest, amplest introduction in English, well suited for inde

pendent study. Subdivision of main theory, such as theory of sets of points, are discussed,
but emphasis is on general theory. Partial contents: rudiments of set theory, arbitrary sets

and their cardinal numbers, ordered sets and their order types, well-ordered sets and their

cardinal numbers. Bibliography. Key to symbols. Index, vii + 144pp. 5% x 8.

S141 Paperbound $1.35



Catalogue of Dover Books

THEORY AND APPLICATIONS OF FINITE GROUPS, G. A. Miller, H. F. Blichfeldt, L E. Dickspn.
Unusually accurate and authoritative work, each section prepared by a leading specialist:
Miller on substitution and abstract groups, Blichfeldt on finite groups of linear homogeneous
transformations, Dickson on applications of finite groups. Unlike more modern works, this gives
the concrete basis from which abstract group theory arose. Includes Abelian groups, prime-
power groups, isomorphisms, matrix forms of linear transformations, Sylow groups, Galois

theory of algebraic equations, duplication of a cube, trisection of an angle, etc. 2 Indexes.
267 problems, xvii + 390pp. 53/8 x 8. S216 Paperbound $2.00

THE THEORY OF DETERMINANTS, MATRICES, AND INVARIANTS, H. W. Turnbull. Important
study includes all salient features and major theories. 7 chapters on determinants and
matrices cover fundamental properties, Laplace identities, multiplication, linear equations,
rank and differentiation, etc. Sections on invariants gives general properties, symbolic and
direct methods of reduction, binary and polar forms, general linear transformation, first

fundamental theorem, multilinear forms. Following chapters study development and proof
of Hilbert s Basis Theorem, Gordan-Hilbert Finiteness Theorem, Clebsch s Theorem, and
include discussions of apolarity, canonical forms, geometrical interpretations of algebraic
forms, complete system of the general quadric, etc. New preface and appendix. Bibliography,
xviii + 374pp. 53/s x 8. S699 Paperbound $2.25

AN INTRODUCTION TO THE THEORY OF CANONICAL MATRICES, H. W. Turnbull and A. C. Aitken.
All principal aspects of the theory of canonical matrices, from definitions and fundamental
properties of matrices to the practical applications of their reduction to canonical form.

Beginning with matrix multiplications, reciprocals, and partitioned matrices, the authors go
on to elementary transformations and bilinear and quadratic forms. Also covers such topics
as a rational canonical form for the collineatory group, congruent and conjunctive transfor
mation for quadratic and hermitian forms, unitary and orthogonal transformations, canonical
reduction of pencils of matrices, etc. Index. Appendix. Historical notes at chapter ends.

Bibliographies. 275 problems, xiv + 200pp. 5% x 8. S177 Paperbound $1.55

A TREATISE ON THE THEORY OF DETERMINANTS, T. Muir. Unequalled as an exhaustive compila
tion of nearly all the known facts about determinants up to the early 1930 s. Covers notation
and general properties, row and column transformation, symmetry, compound determinants,
adjugates, rectangular arrays and matrices, linear dependence, gradients, Jacobians, Hessians,
Wronskians, and much more. Invaluable for libraries of industrial and research organizations
as well as for student, teacher, and mathematician; very useful in the field of computing
machines. Revised and enlarged by W. H. Metzler. Index. 485 problems and scores of numeri
cal examples, iv + 766pp. 53/8 x 8. S670 Paperbound $3.00

THEORY OF DETERMINANTS IN THE HISTORICAL ORDER OF DEVELOPMENT, Sir Thomas Muir.

Unabridged reprinting of this complete study of 1,859 papers on determinant theory written
between 1693 and 1900. Most important and original sections reproduced, valuable com
mentary on each. No other work is necessary for determinant research: all types are covered
each subdivision of the theory treated separately; all papers dealing with each type are

covered; you are told exactly what each paper is about and how important its contribution is.

Each result, theory, extension, or modification is assigned its own identifying numeral so that
the full history may be more easily followed. Includes papers on determinants in general,
determinants and linear equations, symmetric determinants, alternants, recurrents, determi
nants having invariant factors, and all other major types. &quot;A model of what such histories

ought to be,&quot; NATURE. &quot;Mathematicians must ever be grateful to Sir Thomas for his monu
mental work,&quot; AMERICAN MATH MONTHLY. Four volumes bound as two. Indices. Bibliog

raphies. Total of Ixxxiv + 1977pp. 53/8 x 8. S672-3 The set, Clothbound $12.50

Calculus and function theory, Fourier theory, infinite series, calculus of

variations, real and complex functions

FIVE VOLUME &quot;THEORY OF FUNCTIONS SET BY KONRAD KNOPP

This five-volume set, prepared by Konrad Knopp, provides a complete and readily followed

account of theory of functions. Proofs are given concisely, yet without sacrifice of complete
ness or rigor. These volumes are used as texts by such universities as M.I.T., University of

Chicago, N. Y. City College, and many others. &quot;Excellent introduction . . . remarkably

readable, concise, clear, rigorous,&quot; JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION.

ELEMENTS OF THE THEORY OF FUNCTIONS, Konrad Knopp. This book provides the student

with background for further volumes in this set, or texts on a similar level. Partial contents:

foundations, system of complex numbers and the Gaussian plane of numbers, Riemann

sphere of numbers, mapping by linear functions, normal forms, the logarithm, the cyclometric
functions and binomial series. &quot;Not only for the young student, but also for the student

who knows all about what is in
it,&quot;

MATHEMATICAL JOURNAL. Bibliography. Index. 140pp.
53/8 x 8. S154 Paperbound $1.50

THEORY OF FUNCTIONS, PART I, Konrad Knopp. With volume II, this book provides coverage
of basic concepts and theorems. Partial contents: numbers and points, functions of a com

plex variable, integral of a continuous function, Cauchy s integral theorem, Cauchy s integral

formulae, series with variable terms, expansion of analytic functions in power series, analytic

continuation and complete definition of analytic functions, entire transcendental functions,

Laurent expansion, types of singularities. Bibliography. Index, vii + 146pp. 53/8 x 8.

S156 Paperbound $1.35
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THEORY OF FUNCTIONS, PART II, Konrad Knopp. Application and further development of

general theory, special topics. Single valued functions, entire, Weierstrass, Meromorphic
functions. Riemann surfaces. Algebraic functions. Analytical configuration, Riemann surface.
Bibliography. Index, x + 150pp. 53/a x 8. S157 Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 1, Konrad Knopp. Problems in ele
mentary theory, for use with Knopp s THEORY OF FUNCTIONS, or any other text, arranged
according to increasing difficulty. Fundamental concepts, sequences of numbers and infinite

series, complex variable, integral theorems, development in series, conformal mapping. 182
problems. Answers, viii + 126pp. 53/a x 8. S158 Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 2, Konrad Knopp. Advanced theory
of functions, to be used either with Knopp s THEORY OF FUNCTIONS, or any other com
parable text. Singularities, entire & meromorphic functions, periodic, analytic, continuation,
multiple-valued functions, Riemann surfaces, conformal mapping. Includes a section of addi
tional elementary problems. &quot;The difficult task of selecting from the immense material of the
modern theory of functions the problems just within the reach of the beginner is here
masterfully accomplished,&quot; AM. MATH. SOC. Answers. 138pp. 5% x 8. S159 Paperbound $1.35

A COURSE IN MATHEMATICAL ANALYSIS, Edouard Goursat. Trans, by E. R. Hedrick, 0. Dunkel.
Classic study of fundamental material thoroughly treated. Exceptionally lucid exposition of

wide range of subject matter for student with 1 year of calculus. Vol. 1: Derivatives and
Differentials, Definite Integrals, Expansion in Series, Applications to Geometry. Problems.
Index. 52 illus. 556pp. Vol. 2, Part I: Functions of a Complex Variable, Conformal Repre
sentations, Doubly Periodic Functions, Natural Boundaries, etc. Problems. Index. 38 illus.

269pp. Vol. 2, Part 2: Differential Equations, Cauchy-Lipschitz Method, Non-linear Differential

Equations, Simultaneous Equations, etc. Problems. Index. 308pp. 5% x 8.

Vol. 1 S554 Paperbound $2.50
Vol. 2 part 1 S555 Paperbound $1.85
Vol. 2 part 2 S556 Paperbound $1.85

3 vol. set $6.20

MODERN THEORIES OF INTEGRATION, H. Kestelman. Connected and concrete coverage, with

fully-worked-out proofs for every step. Ranges from elementary definitions through theory
of aggregates, sets of points, Riemann and Lebesgue integration, and much more. This new
revised and enlarged edition contains a new chapter on Riemann-Stieltjes integration, as well

as a supplementary section of 186 exercises. Ideal for the mathematician, student, teacher,
or self-studier. Index of Definitions and Symbols. General Index. Bibliography, x + 310pp.
55/8 x 83/8. S572 Paperbound $2.25

THEORY OF MAXIMA AND MINIMA, H. Hancock. Fullest treatment ever written; only work in

English with extended discussion of maxima and minima for functions of 1, 2, or n variables,

problems with subsidiary constraints, and relevant quadratic forms. Detailed proof of each

important theorem. Covers the Scheeffer and von Dantscher theories, homogeneous quadratic
forms, reversion of series, fallacious establishment of maxima and minima, etc. Unsurpassed
treatise for advanced students of calculus, mathematicians, economists, statisticians. Index.
24 diagrams. 39 problems, many examples. 193pp. 5% x 8. S665 Paperbound $1.50

AN ELEMENTARY TREATISE ON ELLIPTIC FUNCTIONS, A. Caylcy. Still the fullest and clearest
text on the theories of Jacobi and Legendre for the advanced student (and an excellent

supplement for the beginner). A masterpiece of exposition by the great 19th century British

mathematician (creator of the theory of matrices and abstract geometry), it covers the

addition-theory, Landen s theorem, the 3 kinds of elliptic integrals, transformations, the

q-functions, reduction of a differential expression, and much more. Index, xii + 386pp. 5% x 8.

S728 Paperbound $2.00

THE APPLICATIONS OF ELLIPTIC FUNCTIONS, A. G. Greenhill. Modern books forego detail for

sake of brevity this book offers complete exposition necessary for proper understanding,
use of elliptic integrals. Formulas developed from definite physical, geometric problems;
examples representative enough to offer basic information in widely useable form. Elliptic

integrals, addition theorem, algebraical form of addition theorem, elliptic integrals of 2nd,
3rd kind, double periodicity, resolution into factors, series, transformation, etc. Introduction.
Index. 25 illus . xi + 357pp. 53/8 x 8. S603 Paperbound $1.75

THE THEORY OF FUNCTIONS OF REAL VARIABLES, James Pierpont. A 2-volume authoritative

exposition, by one of the foremost mathematicians of his time. Each theorem stated with
all conditions, then followed by proof. No need to go through complicated reasoning to dis

cover conditions added without specific mention. Includes a particularly complete, rigorous
presentation of theory of measure; and Pierpont s own work on a theory of Lebesgue
integrals, and treatment of area of a curved surface. Partial contents, Vol. 1: rational

numbers, exponentials, logarithms, point aggregates, maxima, minima, proper integrals,

improper integrals, multiple proper integrals, continuity, discontinuity, indeterminate forms.
Vol. 2: point sets, proper integrals, series, power series, aggregates, ordinal numbers,
discontinuous functions, sub-, infra-uniform convergence, much more. Index. 95 illustrations.

1229pp. 53/8 x 8. S558-9, 2 volume set, paperbound $5.20
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FUNCTIONS OF A COMPLEX VARIABLE, James Pierpont. Long one of best in the field. A
thorough treatment of fundamental elements, concepts, theorems. A complete study, rigor
ous, detailed, with carefully selected problems worked out to illustrate each topic. Partial
contents: arithmetical operations, real term series, positive term series, exponential functions,
integration, analytic functions, asymptotic expansions, functions of Weierstrass, Legendre,
etc. Index. List of symbols. 122 illus. 597pp. 5% x 8. S560 Paperbound $2.45

MODERN OPERATIONAL CALCULUS: WITH APPLICATIONS IN TECHNICAL MATHEMATICS, N. W.
McLachlan. An introduction to modern operational calculus based upon the Laplace trans
form, applying it to the solution of ordinary and partial differential equations. For physi
cists, engineers, and applied mathematicians. Partial contents: Laplace transform, theorems
or rules of the operational calculus, solution of ordinary ana partial linear differential

equations with constant coefficients, evaluation of integrals and establishment of mathe
matical relationships, derivation of Laplace transforms of various functions, etc. Six appen
dices deal with Heaviside s unit function, etc. Revised edition. Index. Bibliography xiv +
218pp. 53/8 x 8V2. S192 Paperbound $1.75

ADVANCED CALCULUS, E. B. Wilson. An unabridged reprinting of the work which continues
to be recognized as one of the most comprehensive and useful texts in the field. It contains
an immense amount of well-presented, fundamental material, including chapters on vector

functions, ordinary differential equations, special functions, calculus of variations, etc.,
which are excellent introductions to these areas. For students with only one year of cal

culus, nwe than 1300 exercises cover both pure math and applications to engineering
and physical problems. For engineers, physicists, etc., this work, with its 54 page intro

ductory review, is the ideal reference and refresher. Index, ix + 566pp. 5% x 8.

S504 Paperbound $2.45

ASYMPTOTIC EXPANSIONS, A. Erdelyi. The only modern work available in English, this is an

unabridged reproduction of a monograph prepared for the Office of Naval Research. It dis

cusses various procedures for asymptotic evaluation of integrals containing a large parameter
and solutions of ordinary linear differential equations. Bibliography of 71 items, vi + 108pp.
53/8 x 8. S318 Paperbound $1.35

INTRODUCTION TO ELLIPTIC FUNCTIONS: with applications, F. Bowman. Concise, practical
introduction to elliptic integrals and functions. Beginning with the familiar trigonometric
functions, it requires nothing more from the reader than a knowledge of basic principles
of differentiation and integration. Discussion confined to the Jacobian functions. Enlarged
bibliography. Index. 173 problems and examples. 56 figures, 4 tables. 115pp. 53/a x 8.

S922 Paperbound $1.50

ON RIEMANN S THEORY OF ALGEBRAIC FUNCTIONS AND THEIR INTEGRALS: A SUPPLEMENT
TO THE USUAL TREATISES, Felix Klein. Klein demonstrates how the mathematical ideas in

Riemann ? work on Abelian integrals can be arrived at by thinking in terms of the flow
of electric current on surfaces. Intuitive explanations, not detailed proofs given in an
extremely clear exposition, concentrating on the kinds of functions which can be defined
on Riemann surfaces. Also useful as an introduction to the origins of topological problems.
Complete and unabridged. Approved translation by Frances Hardcastle. New introduction.
43 figures. Glossary, xii + 76pp. 5% x 8V2.

.
S1072 Paperbound $1.25

COLLECTED WORKS OF BERNHARD RIEMANN. This important source book is the first to con
tain the complete text of both 1892 Werke and the 1902 supplement, unabridged. It contains
31 monographs, 3 complete lecture courses, 15 miscellaneous papers, which have been of

enormous importance in relativity, topology, theory of complex variables, and other areas
of mathematics. Edited by R. Dedekind, H. Weber, M. Noether, W. Wirtinger. German text.

English introduction by Hans Lewy. 690pp. 5 3/s x 8. S226 Paperbound $3.75

THE TAYLOR SERIES, AN INTRODUCTION TO THE THEORY OF FUNCTIONS OF A COMPLEX
VARIABLE, P. Dienes. This book investigates the entire realm of analytic functions. Only
ordinary calculus is needed, except in the last two chapters. Starting with an introduction
to real variables and complex algebra, the properties of infinite series, elementary func

tions, complex differentiation and integration are carefully derived. Also biuniform mapping,
a thorough two part discussion of representation and singularities of analytic functions,
overconvergence and gap theorems, divergent series, Taylor series on its circle of con

vergence, divergence and singularities, etc. Unabridged, corrected reissue of first edition.

Preface and index. 186 examples, many fully worked out. 67 figures, xii + 555pp. 5 3/a x 8.

S391 Paperbound $2.75

INTRODUCTION TO BESSEL FUNCTIONS, Frank Bowman. A rigorous self-contained exposition

providing all necessary material during the development, which requires only some knowl

edge of calculus and acquaintance with differential equations. A balanced presentation

including applications and practical use. Discusses Bessel Functions of Zero Order, of Any
Real Order; Modified Bessel Functions of Zero Order; Definite Integrals; Asymptotic Expan
sions; Bessel s Solution to Kepler s Problem; Circular Membranes; much more. &quot;Clear and

straightforward . . . useful not only to students of physics and engineering, but to mathe
matical students in general,&quot; Nature. 226 problems. Short tables of Bessel functions. 27

figures. Index, x + 135pp. 5% x 8. S462 Paperbound $1.50
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ELEMENTS OF THE THEORY OF REAL FUNCTIONS, J. E. Littlewood. Based on lectures given at

Trinity College, Cambridge, this book has proved to be extremely successful in introducing
graduate students to the modern theory of functions. It offers a full and concise coverage
of classes and cardinal numbers, well-ordered series, other types of series, and elements
of the theory of sets of points. 3rd revised edition, vii + 71pp. 5% x 8.

5171 Clothbound $2.85
5172 Paperbound $1.25

TRANSCENDENTAL AND ALGEBRAIC NUMBERS, A. 0. Geifond. First English translation of work
by leading Soviet mathematician. Thue-Siegel theorem, its p-adic analogue, on approximation
of algebraic numbers by numbers in fixed algebraic field; Hermite-Lindemann theorem on

transcendency of Bessel functions, solutions of other differential equations; Gelfond-Schneider
theorem on transcendency of alpha to power beta; Schneider s work on elliptic functions,
with method developed by Geifond. Translated by L. F. Boron. Index. Bibliography. 200pp.
53/8 x 8. S615 Paperbound $1.75

ELLIPTIC INTEGRALS, H. Hancock. Invaluable in work involving differential equations contain
ing cubics or quartics under the root sign, where elementary calculus methods are inade
quate. Practical solutions to problems that occur in mathematics, engineering, physics:
differential equations requiring integration of Lame s, Briot s, or Bouquet s equations; deter
mination of arc of ellipse, hyperbola, lemniscate; solutions of problems in elastica; motion
of a projectile under resistance varying as the cube of the velocity; pendulums; many
others. Exposition is in accordance with Legendre-Jacobi theory and includes rigorous dis
cussion of Legendre transformations. 20 figures. 5 place table. Index. 104pp. 5Vs x 8.

S484 Paperbound $1.25

LECTURES ON THE THEORY OF ELLIPTIC FUNCTIONS, H. Hancock. Reissue of the only book
in English with so extensive a coverage, especially of Abel, Jacobi, Legendre, Weierstrasse,
Hermite, Liouville, and Riemann. Unusual fullness of treatment, plus applications as well as
theory, in discussing elliptic function (the universe of elliptic integrals originating in works
of Abel and Jacobi), their existence, and ultimate meaning. Use is made of Riemann to
provide the most general theory. 40 page table of formulas. 76 figures, xxiii + 498pp.

S483 Paperbound $2.55

THE THEORY AND FUNCTIONS OF A REAL VARIABLE AND THE THEORY OF FOURIER S SERIES,
E. W. Hobson. One of the best introductions to set theory and various aspects of functions
and Fourier s series. Requires only a good background in calculus. Provides an exhaustive

coverage of: metric and descriptive properties of sets of points; transfinite numbers and
order types; functions of a real variable; the Riemann and Lebesgue integrals; sequences
and series of numbers; power-series; functions representable by series sequences of continuous
functions; trigonometrical series; representation of functions by Fourier s series; complete
exposition (200pp.) on set theory; and much more. &quot;The best possible guide,&quot; Nature. Vol. I:

88 detailed examples, 10 figures. Index, xv + 736pp. Vol. II: 117 detailed examples, 13

figures. Index, x + 780pp. 6V8 x 9V4 . Vol. I: S387 Paperbound $3.50
Vol. II: S388 Paperbound $3.00

ALMOST PERIODIC FUNCTIONS, A. S. Besicovitch. This unique and important summary by a
well-known mathematician covers in detail the two stages of development in Bohr s theory of
almost periodic functions: (1) as a generalization of pure periodicity, with results and
proofs; (2) the work done by Stepanoff, Wiener, Weyl, and Bohr in generalizing the theory.
Bibliography, xi + 180pp. 53/8 x 8. S18 Paperbound $1.75

THE ANALYTICAL THEORY OF HEAT, Joseph Fourier. This book, which revolutionized mathe
matical physics, is listed in the Great Books program, and many other listings of great
books. It has been used with profit by generations of mathematicians and physicists who are
interested in either heat or in the application of the Fourier integral. Covers cause and
reflection of rays of heat, radiant heating, heating of closed spaces, use of trigonometric
series in the theory of heat, Fourier integral, etc. Translated by Alexander Freeman. 20
figures, xxii + 466pp. 53/8 x 8. S93 Paperbound $2.50

AN INTRODUCTION TO FOURIER METHODS AND THE LAPLACE TRANSFORMATION, Philip Franklin.
Concentrates upon essentials, enabling the reader with only a working knowledge of calculus
to gain an understanding of Fourier methods in a broad sense, suitable for most applica
tions. This work covers complex qualities with methods of computing elementary functions
for complex values of the argument and finding approximations by the use of charts;
Fourier series and integrals with half-range and complex Fourier series; harmonic analysis;
Fourier and Laplace transformations, etc.; partial differential equations with applications to
transmission of electricity; etc. The methods developed are related to physical problems of
heat flow, vibrations, electrical transmission, electromagnetic radiation, etc. 828 problems
with answers. Formerly entitled &quot;Fourier Methods.&quot; Bibliography. Index, x + 289pp. 5% x 8.

S452 Paperbound $2.00

THE FOURIER INTEGRAL AND CERTAIN OF ITS APPLICATIONS, Norbert Wiener. The only book-
length study of the Fourier integral as link between pure and applied math. An expansion
of lectures given at Cambridge. Partial contents: Plancherel s theorem, general Tauberian
theorem, special Tauberian theorems, generalized harmonic analysis. Bibliography, viii +
201pp. 53/8 x 8. S272 Paperbound $1.50
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Differential equations, ordinary and partial; integral equations

INTRODUCTION TO THE DIFFERENTIAL EQUATIONS OF PHYSICS, L Hopf. Especially valuable
to the engineer with no math beyond elementary calculus. Emphasizing intuitive rather than
formal aspects of concepts, the author covers an extensive territory. Partial contents- Law
of causality, energy theorem, damped oscillations, coupling by friction, cylindrical and
spherical coordinates, heat source, etc. Index. 48 figures. 160pp. 5% x 8.

S120 Paperbound $1.35

INTRODUCTION TO THE THEORY OF LINEAR DIFFERENTIAL EQUATIONS, E. G. Poole. Authorita
tive discussions of important topics, with methods of solution more detailed than usual, for
students with background of elementary course in differential equations. Studies existence
theorems, linearly independent solutions; equations with constant coefficients; with uniform
analytic coefficients; regular singularities; the hypergeometric equation; conformal repre
sentation; etc. Exercises. Index. 210pp. 5% x 8. S629 Paperbound $1.65

DIFFERENTIAL EQUATIONS FOR ENGINEERS, P. Franklin. Outgrowth of a course given 10
years at M. I. T. Makes most useful branch of pure math accessible for practical work.
Theoretical basis of D.E. s; solution of ordinary D.E. s and partial derivatives arising from
heat flow, steady-state temperature of a plate, wave equations; analytic functions; con
vergence of Fourier Series. 400 problems on electricity, vibratory systems, other topics.
Formerly &quot;Differential Equations for Electrical Engineers.&quot; Index 41 illus. 307pp. 5y& x 8.

S601 Paperbound $1.65

DIFFERENTIAL EQUATIONS, F. R. Moulton. A detailed, rigorous exposition of all the non-
elementary processes of solving ordinary differential equations. Several chapters devoted to
the treatment of practical problems, especially those of a physical nature, which are far
more advanced than problems usually given as illustrations. Includes analytic differential

equations; variations of a parameter; integrals of differential equations; analytic implicit
functions; problems of elliptic motion; sine-amplitude functions; deviation of formal bodies;
Cauchy-Lipschitz process; linear differential equations with periodic coefficients; differential

equations in infinitely many variations; much more. Historical notes. 10 figures. 222 prob
lems. Index, xv + 395pp. 53/8 x 8. S451 Paperbound $2.00

DIFFERENTIAL AND INTEGRAL EQUATIONS OF MECHANICS AND PHYSICS (DIE DIFFERENTIAL-

UNO INTEGRALGLEICHUNGEN DER MECHANIK UNO PHYSIK), edited by P. Frank and R. yon
Mises. Most comprehensive and authoritative work on the mathematics of mathematical

physics available today in the United States: the standard, definitive reference for teachers,

physicists, engineers, and mathematicians now published (in the original German) at a rela

tively inexpensive price for the first time! Every chapter in this 2,000-page set is by an

expert in his field: Carathe&quot;odory, Courant, Frank, Mises, and a dozen others. Vol I, on

mathematics, gives concise but complete coverages of advanced calculus, differential equa

tions, integral equations, and potential, and partial differential equations. Index, xxiii +
916pp. Vol. II (physics): classical mechanics, optics, continuous mechanics, heat conduction

and diffusion, the stationary and quasi-stationary electromagnetic field, electromagnetic

oscillations, and wave mechanics. Index, xxiv + 1106pp. Two volume set. Each volume avail-

ab,e separately. 5y8 x ,*. S7.7 v.1 I

Clotjbo^ |TjD
The set $15.00

LECTURES ON CAUCHY S PROBLEM, J. Hadamard. Based on lectures given at Columbia, Rome,

this discusses work of Riemann, Kirchhoff, Volterra, and the author/s own research on the

hyperbolic case in linear partial differential equations. It extends spherical and cylindrical

waves to apply to all (normal) hyperbolic equations. Partial contents: Cauchy s problem,

fundamental formula, equations with odd number, with even number of independent var

iables; method of descent. 32 figures. Index, iii + 316pp. 53/a x 8. S105 Paperbound $1.75

THEORY OF DIFFERENTIAL EQUATIONS, A. R. Forsyth. Out of print for over a decade, the

complete 6 volumes (now bound as 3) of this monumental work represent the most com

prehensive treatment of differential equations ever written. Historical presentation includes

in 2500 pages every substantial development. Vol. 1, 2: EXACT EQUATIONS, PFAFF S

PROBLEM; ORDINARY EQUATIONS, NOT LINEAR: methods of Grassmann, Clebsch, Lie, Dar-

boux; Cauchy s theorem; branch points; etc. Vol. 3, 4: ORDINARY EQUATIONS, NOT LINEAR;

ORDINARY LINEAR EQUATIONS: Zeta Fuchsian functions, general theorems on algebraic

integrals Brun s theorem, equations with uniform periodic coffiecients, etc. Vol. 4, 5:

PARTIAL DIFFERENTIAL EQUATIONS: 2 existence-theorems, equations of theoretical dynamics,

Laplace transformations, general transformation of equations of the 2nd order, much more.

Indexes. Total of 2766pp. 53/8 x 8. S576-7-8 Clothbound: the set $15.00

PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS, A. G. Webster. A keystone

work in the library of every mature physicist, engineer, researcher. Valuable sections on

elasticity compression theory, potential theory, theory of sound, heat conduction, wave

propagation, vibration theory. Contents include: deduction of differential equations, vibra

tions, normal functions, Fourier s series, Cauchy s method, boundary problems, method of

Riemann-Volterra. Spherical, cylindrical, ellipsoidal harmonics, applications, etc. 97 figures,

vii + 440pp. 53/8 x 8. S263 Paperbound $2.25
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ORDINARY DIFFERENTIAL EQUATIONS, E. L. Ince. A most compendious analysis in real and
complex domains. Existence and nature of solutions, continuous transformation groups, solu
tions in an infinite form, definite integrals, algebraic theory, Sturmian theory, boundary prob
lems, existence theorems, 1st order, higher order, etc. &quot;Deserves the highest praise, a notable
addition to mathematical literature,&quot; BULLETIN, AM. MATH. SOC. Historical appendix. Bib

liography. 18 figures, viii + 558pp. 53/8 x 8. S349 Paperbound $2.75

INTRODUCTION TO NONLINEAR DIFFERENTIAL AND INTEGRAL EQUATIONS, Harold T. Davis.
A thorough introduction to this important area, of increasing interest to mathematicians and
scientists. First published by the United States Atomic Energy Commission, it includes chap
ters on the differential equation of the first order, the Riccati equation (as a bridge between
linear and nonlinear equations), existence theorems, second order equations, elliptic integrals,
elliptic functions, and theta functions, second order differential equations of polynomial
class, continuous analytic continuation, the phase plane and its phenomena, nonlinear me
chanics, the calculus of variations, etc. Appendices on Painlev6 transcendents and Van der
Pol and Volterra equations. Bibliography of 350 items. 137 problems. Index, xv + 566pp.
5% x 8V2. S971 Paperbound $2.00

THEORY OF FUNCTIONALS AND OF INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS, VitO
Volterra. Unabridged republication of the only English translation. An exposition of the
general theory of the functions depending on a continuous set of values of another function,
based on the author s fundamental notion of the transition from a finite number of variables
to a continually infinite number. Though dealing primarily with integral equations, much
material on calculus of variations is included. The work makes no assumption of previous
knowledge on the part of the reader. It begins with fundamental material and proceeds to
Generalization of Analytic Functions, Integra-Differential Equations, Functional Derivative

Equations, Applications, Other Directions of Theory of Functionals, etc. New introduction by
G. C. Evans. Bibliography and criticism of Volterra s work by E. Whittaker. Bibliography.
Index of authors cited. Index of subjects, xxxx + 226pp. 5% x 8. S502 Paperbound $1.75

LINEAR INTEGRAL EQUATIONS, W. V. Lovitt. Systematic survey of general theory, with some
application to differential equations, calculus of variations, problems of math, physics.
Partial contents: integral equation of 2nd kind by successive substitutions; Fredholm s equa
tion as ratio of 2 integral series in lambda, applications of the Fredholrr *heory, Hilbert-

Schmidt theory of symmetric kernels, application, etc. Neumann, Dirichlet, vibratory prob
lems. Index, ix + 253pp. 53/8 x 8. S176 Paperbound $2.00

Foundations of mathematics

THE CONTINUUM AND OTHER TYPES OF SERIAL ORDER, E. V. Huntington. This famous book
gives a systematic elementary account of the modern theory of the continuum as a type of

serial order. Based on the Cantor-Dedekind ordinal theory, which requires no technical

knowledge of higher mathematics, it offers an easily followed analysis of ordered classes,
discrete and dense series, continuous series, Cantor s transfinite numbers. 2nd edition. Index,

viii + 82pp. S^/s x 8. S130 Paperbound $1.00

CONTRIBUTIONS TO THE FOUNDING OF THE THEORY OF TRANSFINITE NUMBERS, Georg Cantor.

These papers founded a new branch of mathematics. The famous articles of 1895-7 are

translated, with an 82-page introduction by P. E. B. Jourdain dealing with Cantor, the back

ground of his discoveries, their results, future possibilities. Bibliography. Index. Notes,

ix + 211 pp. 53/8 x 8. S45 Paperbound $1.35

ELEMENTARY MATHEMATICS FROM AN ADVANCED STANDPOINT, Felix Klein.

This classic text is an outgrowth of Klein s famous integration and survey course at Gottingen.
Using one field of mathematics to interpret, adjust, illuminate another, it covers basic

topics in each area, illustrating its discussion with extensive analysis. It is especially
valuable in considering areas of modern mathematics. &quot;Makes the reader feel the inspiration
of ... a great mathematician, inspiring teacher . . . with deep insight into the founda
tions and interrelations,&quot; BULLETIN, AMERICAN MATHEMATICAL SOCIETY.

Vol. 1. ARITHMETIC, ALGEBRA, ANALYSIS. Introducing the concept of function immediately,
it enlivens abstract discussion with graphical and geometrically perceptual methods. Partial

contents: natural numbers, extension of the notion of number, special properties, complex
numbers. Real equations with real unknowns, complex quantities. Logarithmic, exponential
functions, goniometric functions, infinitesimal calculus. Transcendence of e and pi, theory
of assemblages. Index. 125 figures, ix + 274pp . 5% x 8. S150 Paperbound $1.85

Vol. 2. GEOMETRY. A comprehensive view which accompanies the space perception inherent

in geometry with analytic formulas which facilitate precise formulation. Partial contents:

Simplest geometric manifolds: line segment, Grassmann determinant principles, classification

of configurations of space, derivative manifolds. Geometric transformations: affine transforma

tions, projective, higher point transformations, theory of the imaginary. Systematic discussion
of geometry and its foundations. Indexes. 141 illustrations, ix + 214pp. 5% x 8.

S151 Paperbound $1.75
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ESSAYS ON THE THEORY OF NUMBERS: 1. CONTINUITY AND IRRATIONAL NUMBERS; 2. THE
NATURE AND MEANING OF NUMBERS, Richard Dedekind. The two most important essays on
the logical foundations of the number system by the famous German mathematician. The
first provides a purely arithmetic and perfectly rigorous foundation for irrational numbers and
thereby a rigorous meaning to continuity in analysis. The second essay is an attempt to

give a logical basis for transfinite numbers and properties of the natural numbers. Discusses
the logical validity of mathematical induction. Authorized English translations by W. W.
Deman of &quot;Stetigkeit und irrationale Zahlen&quot; and &quot;Was sind und was sollen die Zahlen?&quot;

vii + 115pp. 53/8 x 8. T1010 Paperbound $1.00

Geometry

THE FOUNDATIONS OF EUCLIDEAN GEOMETRY, H. G. Forder. The first rigorous account of

Euclidean geometry, establishing propositions without recourse to empiricism, and without

multiplying hypotheses. Corrects many traditional weaknesses of Euclidean proofs, and
investigates the problems imposed on the axiom system by the discoveries of Bolyai and
Lobachevsky. Some topics discussed are Classes and Relations; Axioms for Magnitudes;
Congruence and Similarity; Algebra of Points; Hessenberg s Theorem; Continuity; Existence
of Parallels; Reflections; Rotations; Isometries; etc. Invaluable for the light it throws on
foundations of math. Lists: Axioms employed, Symbols, Constructions. 295pp. 5 3/a x 8.

S481 Paperbound $2.00

ADVANCED EUCLIDEAN GEOMETRY, R. A. Johnson. For years the standard textbook on advanced
Euclidean geometry, requires only high school geometry and trigonometry. Explores in unusual
detail and gives proofs of hundreds of relatively recent theorems and corollaries, many
formerly available only in widely scattered journals. Covers tangent circles, the theorem of

Miquel, symmedian point, pedal triangles and circles, the Brocard configuration, and much
more. Formerly &quot;Modern Geometry.&quot; Index. 107 diagrams, xiii + 319pp. 5 3/8 x 8.

S669 Paperbound $1.65

HIGHER GEOMETRY: AN INTRODUCTION TO ADVANCED METHODS IN ANALYTIC GEOMETRY, F. S.

Woods. Exceptionally thorough study of concepts and methods of advanced algebraic geometry
(as distinguished from differential geometry). Exhaustive treatment of 1-, 2-, 3-, and 4-

dimensional coordinate systems, leading to n-dimensional geometry in an abstract sense.
Covers projectivity, tetracyclical coordinates, contact transformation, pentaspherical coordi

nates, much more. Based on M.I.T. lectures, requires sound preparation in analytic geometry
and some knowledge of determinants. Index. Over 350 exercises. References. 60 figures,
x + 423pp. 53/8 x 8. S737 Paperbound $2.00

CONTEMPORARY GEOMETRY, Andr6 Delachet. Translated by Howard G. Bergmann. The recent

developments in geometry covered in uncomplicated fashion. Clear discussions of modern

thinking about the theory of groups, the concept of abstract geometry, projective ge9metry,
algebraic geometry, vector spaces, new kinds of metric spaces, developments in differen

tial geometry, etc. A large part of the book is devoted to problems, developments, and

applications of topology. For advanced undergraduates and graduate students as well as

mathematicians in other fields who want a brief introduction to current work in geometry.
39 figures. Index, xix + 94pp. 53/8 x 8V2 . S988 Paperbound $1.00

ELEMENTS OF PROJECTIVE GEOMETRY, L. Cremona. Outstanding complete treatment of projec

tive geometry by one of the foremost 19th century geometers. Detailed proofs of all funda

mental principles, stress placed on the constructive aspects. Covers pomology, law of duality,

anharmonic ratios, theorems of Pascal and Brianchon, foci, polar reciprocal figures, etc. Only

ordinary geometry necessary to understand this honored classic. Index. Over 150 fully worked

out examples and problems. 252 diagrams, xx + 302pp. 53/8 x 8. S668 Paperbound $1.75

AN INTRODUCTION TO PROJECTIVE GEOMETRY, R. M. Winger. One of the best introductory

texts to an important area in modern mathematics. Contains full development of elementary

concepts often omitted in other books. Employing the analytic method to capitalize on the

student s collegiate training in algebra, analytic geometry and calculus, the author deals

with such topics as Essential Constants, Duality, The Line at Infinity, Projective Properties
and Double Ratio, Projective Coordinates, The Conic, Collineations and Involutions in One

Dimension, Binary Forms, Algebraic Invariants, Analytic Treatment of the Conic, Collinea

tions in the Plane, Cubic Involutions and the Rational Cubic Curve, and a clear discussion

of Non-Euclidean Geometry. For senior-college students and graduates. &quot;An excellent text

book . . . very, clearly written . . . propositions stated concisely,&quot; A. Emch, Am. Math.

Monthly. Corrected reprinting. 928 problems. Index. 116 figures, xii + 443pp. 53/8 x 8.

S949 Paperbound $2.00

ALGEBRAIC CURVES, Robert J. Walker, Professor of Mathematics, Cornell University. Fine

introduction to algebraic geometry. Presents some of the recently developed algebraic meth

ods of handling problems in algebraic geometry, shows how these methods are related to

the older analytic and geometric problems, and applies them to those same geometric prob

lems. Limited to the theory of curves, concentrating on birational transformations. Contents:

Algebraic Preliminaries, Projective Spaces, Plane Algebraic Curves, Formal Power Series,

Transformations of a Curve, Linear Series. 25 illustrations. Numerous exercises at ends of

sections. Index, x + 201pp. 53/8 x 8V2. S336 Paperbound $2.00
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THE ADVANCED GEOMETRY OF PLANE CURVES AND THEIR APPLICATIONS, C. Zwikker. An un
usual study of many important curves, their geometrical properties and their applications,

including discussions of many less well-known curves not often treated in textbooks on

synthetic and analytic Euclidean geometry. Includes both algebraic and transcendental curves
such as the conic sections, kinked curves, spirals, lemniscates, cycloids, etc. and curves

generated as involutes, evolutes, anticaustics, pedals, envelopes and orthogonal trajectories.
Dr. Zwikker represents the points of the curves by complex numbers instead of two real

Cartesian coordinates, allowing direct and even elegant proofs. Formerly: &quot;Advanced Plane

Geometry.&quot; 273 figures, xii + 299pp. 5% x 8Va. S1078 Paperbound $2.00

A TREATISE ON THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES, L. P. Eisenhart.

Introductory treatise especially for the graduate student, for years a highly successful text

book. More detailed and concrete in approach than most more recent books. Covers space
curves, osculating planes, moving axes, Gauss method, the moving trihedral, geodesies,
conformal representation, etc. Last section deals with deformation of surfaces, rectilinear

congruences, cyclic systems, etc. Index. 683 problems. 30 diagrams, xii + 474pp. 5% x 8.

S667 Paperbound $2.75

A TREATISE ON ALGEBRAIC PLANE CURVES, J. L. Coolidge. Unabridged reprinting of one of

few full coverages in English, offering detailed introduction to theory of algebraic plane
curves and their relations to geometry and analysis. Treats topological properties, Riemann-
Roch theorem, all aspects of wide variety of curves including real, covariant, polar, contain

ing series of a given sort, elliptic, polygonal, rational, the pencil, two parameter nets, etc.

This volume will enable the reader to appreciate the symbolic notation of Aronhold and
Clebsch. Bibliography. Index. 17 illustrations, xxiv + 513pp. 5% x 8. S543 Paperbound $2.75

AN INTRODUCTION TO THE GEOMETRY OF N DIMENSIONS, D. M. Y. Sommerville. An introduc
tion presupposing no prior knowledge of the field, the only book in English devoted exclu

sively to higher dimensional geometry. Discusses fundamental ideas of incidence, parallelism,
perpendicularity, angles between linear space; enumerative geometry; analytical geometry
from projective and metric points of view; polytopes; elementary ideas in analysis situs;
content of hyper-spacial figures. Bibliography. Index. 60 diagrams. 196pp. 5% x 8.

S494 Paperbound $1.50

GEOMETRY OF FOUR DIMENSIONS, H. P. Manning. Unique in English as a clear, concise intro

duction. Treatment is synthetic, and mostly Euclidean, although in hyperplanes and hyper-
spheres at infinity, non-Euclidean geometry is used. Historical introduction. Foundations of

4-dimensional geometry. Perpendicularity, simple angles. Angles of planes, higher order.

Symmetry, order, motion; hyperpyramids, hypercones, hyperspheres; figures with parallel

elements; volume, hypervolume in space; regular polyhedroids. Glossary. 78 figures, ix +
348pp. 53/8 x 8. S182 Paperbound $2.00

CONVEX FIGURES AND POLYHEDRA, L. A. Lyusternik. An excellent elementary discussion by
a leading Russian mathematician. Beginning with the basic concepts of convex figures and
bodies and their supporting lines and planes, the author covers such matters as centrally

symmetric convex figures, theorems of Euler, Cauchy, Steinitz and Alexandrov on convex
polyhedra, linear systems of convex bodies, planar sections of convex bodies, the Brunn-
Minkowski inequality and its consequences, and many other related topics. No more than a

high school background in mathematics needed for complete understanding. First English
translation by T. J. Smith. 182 illustrations. Index, x + 176pp. 53/8 x 8V2.

S1021 Paperbound $1.50

NON-EUCLIDEAN GEOMETRY, Roberto Bonola. The standard coverage of non-Euclidean geom
etry. It examines from both a historical and mathematical point of view the geometries
which have arisen from a study of Euclid s 5th postulate upon parallel lines. Also included
are complete texts, translated, of Bolyai s SCIENCE OF ABSOLUTE SPACE. Lobachevsky s

THEORY OF PARALLELS. 180 diagrams. 431pp. 53/a x 8. S27 Paperbound $2.00

ELEMENTS OF NON-EUCLIDEAN GEOMETRY, D. M. Y. Sommerville. Unique in proceeding step-
by-step, in the manner of traditional geometry. Enables the student with only a good
knowledge of high school algebra and geometry to grasp elementary hyperbolic, elliptic,

analytic non-Euclidean geometries; space curvature and its philosophical implications;
theory of radical axes; homothetic centres and systems of circles; parataxy and parallelism;
absolute measure; Gauss proof of the defect area theorem; geodesic representation; much
more, all with exceptional clarity. 126 problems at chapter endings provide progressive
practice and familiarity. 133 figures. Index, xvi + 274pp. 53/8 x 8. S460 Paperbound $1.75

INTRODUCTORY NON-EUCLIDEAN GEOMETRY, H. P. Manning. Sound elementary introduction to
non-Euclidean geometry. The first two thirds (Pangeometry and the Hyperbolic Geometry)
require a grasp of plane and solid geometry and trigonometry. The last sections (the
Elliptic Geometry and Analytic Non-Euclidean Geometry) necessitate also basic college cal
culus for understanding the text. The book does not propose to investigate the foundations
of geometry, but rather begins with the theorems common to Euclidean and non-Euclidean
geometry and then takes up the specific differences between them. A simple and direct
account of the bases of this important branch of mathematics for teachers and students.
94 figures, vii + 95pp. 53/8 x 8. S310 Paperbound $1.00
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ELEMENTARY CONCEPTS OF TOPOLOGY, P. Alexandroff. First English translation of the famous
brief introduction to topology for the beginner or for the mathematician not undertaking
extensive study. This unusually useful intuitive approach deals primarily with the concepts of

complex, cycle, and homology, and is wholly consistent with current investigations. Ranges
from basic concepts of set-theoretic topology to the concept of Betti groups. &quot;Glowing

example of harmony between intuition and thought,&quot; David Hilbert. Translated by A. E. Farley.
Introduction by D. Hilbert. Index. 25 figures. 73pp. 53/8 x 8. S747 Paperbound $1.00

Number theory

INTRODUCTION TO THE THEORY OF NUMBERS, L. E. Dickson. Thorough, comprehensive ap
proach with adequate coverage of classical literature, an introductory volume beginners
can follow. Chapters on divisibility, congruences, quadratic residues & reciprocity, Dioptiantine
equations, etc. Full treatment of binary quadratic forms without usual restriction to integral
coefficients. Covers infinitude of primes, least residues, Fermat s theorem, Euler s phi
function, Legendre s symbol, Gauss s lemma, automorphs, reduced forms, recent theorems
of Thue & Siegel, many more. Much material not readily available elsewhere. 239 prob
lems. Index. I figure, viii + 183pp. 5% x 8. S342 Paperbound $1.75

ELEMENTS OF NUMBER THEORY, I. M. Vinogradov. Detailed 1st course for persons without
advanced mathematics; 95% of this book can be understood by readers who have gone no
farther than high school algebra. Partial contents: divisibility theory, important number
theoretical functions, congruences, primitive roots and indices, etc. Solutions to both

problems and exercises. Tables of primes, indices, etc. Covers almost every essential formula
in elementary number theory! Translated from Russian. 233 problems, 104 exercises, viii +
227pp. 5% x 8. S259 Paperbound $1.75

THEORY OF NUMBERS and DIOPHANTINE ANALYSIS, R. D. Carmichael. These two complete
works in one volume form one of the most lucid introductions to number theory, requiring only
a firm foundation in high school mathematics. &quot;Theory of Numbers,&quot; partial contents:

Eratosthenes sieve, Euclid s fundamental theorem, G.C.F. and L.C.M. of two or more integers,

linear congruences, etc &quot;Diophantine Analysis&quot;: rational triangles, Pythagorean triangles,

equations Of third, fourth, higher degrees, method of functional equations, much more. &quot;Theory

of Numbers&quot;: 76 problems. Index. 94pp. &quot;Diophantine Analysis&quot;: 222 problems. Index. 118pp.

5% x 8. S529 Paperbound $1.35

Numerical analysis, tables

MATHEMATICAL TABLES AND FORMULAS, Compiled by Robert D. Carmichael and Edwin R.

Smith. Valuable collection for students, etc. Contains all tables necessary in college algebra

and trigonometry, such as five-place common logarithms, logarithmic sines and tangents of

small angles, logarithmic trigonometric functions, natural trigonometric Tunctions, four-place

antilogarithms, tables for changing from sexagesimal to circular and from circular to sexa

gesimal measure of angles, etc. Also many tables and formulas npt ordinarily accessible,

including powers, roots, and reciprocals, exponential and hyperbolic functions, ten-place

logarithms of prime numbers, and formulas and theorems from analytical and elementary

geometry and from calculus. Explanatory introduction, viii + 269pp. 5% x 8V2.
Sill Paperbound $1.25

MATHEMATICAL TABLES, H. B. Dwight. Unique for its coverage in one volume of almost every

function of importance in applied mathematics, engineering, and the physical sciences.

Three extremely fine tables of the three trig functions and their inverse functions to

thousandths of radians; natural and common logarithms; squares, cubes; hyperbolic functions

and the inverse hyperbolic functions; (a
2 + b2

) exp. i/2a ; complete elliptic integrals of the

1st and 2nd kind; sine and cosine integrals; exponential integrals Ei(x) and Ei( -x); binomial

coefficients; factorials to 250; surface zonal harmonics and first derivatives; Bernoulli and

Euler numbers and their logs to base of 10; Gamma function; normal probability integral;

over 60 pages of Bessel functions; the Riemann Zeta function. Each table with formulae

generally used, sources of more extensive tables, interpolation data, etc. Over half have

columns of differences, to facilitate interpolation. Introduction. Index, viii + 231pp. 5% x 8.

S445 Paperbound y 2.orj

TABLES OF FUNCTIONS WITH FORMULAE AND CURVES, E. Jahnke & F. Emde. The world s most

comprehensive 1-volume English-text collection of tables, formulae, curves of transcendent

functions. 4th corrected edition, new 76-page section giving tables, formulae for elementary

functions not in other English editions. Partial contents: sine, cosine, logarithmic integral;

factorial function; error integral; theta functions; elliptic integrals, functions; Legendre,

Bessel, Riemann, Mathieu, hypergeometric functions, etc. Supplementary books Bibliography.

Indexed. &quot;Out of the way functions for which we know no other source SCIENT FIC COM

PUTING SERVICE, Ltd. 212 figures. 400pp. 5*/a x 8. S133 Paperbound $2.00
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JACOBIAN ELLIPTIC FUNCTION TABLES, L. M. Milne-Thomson. An easy to follow, practical
book which gives not only useful numerical tables, but also a complete elementary sketch

of the application of elliptic functions. It covers Jacobian elliptic functions and a description
of their principal properties; complete elliptic integrals; Fourier series and power series

expansions; periods, zeros, poles, residues, formulas for special values of the argument;
transformations, approximations, elliptic integrals, conformal mapping, factorization of cubic

and quartic polynomials; application to the pendulum problem; etc. Tables and* graphs form
the body of the book: Graph, 5 figure table of the elliptic function sn (u m); en (u m);
dn (u m). 8 figure table of complete elliptic integrals K, K

, E, E
,
and the nome q. 7 figure

table of the Jacobian zeta-function Z(u). 3 figures, xi + 123pp. 5% x 8.

S194 Paperbound $1.35

TABLES OF INDEFINITE INTEGRALS, G. Petit Bpis. Comprehensive and accurate, this orderly

grouping of over 2500 of the most useful indefinite integrals will save you hours of laborious

mathematical groundwork. After a list of 49 common transformations of integral expressions,
with a wide variety of examples, the book takes up algebraic functions, irrational monomials,
products and quotients of binomials, transcendental functions, natural logs, etc. You will

rarely or never encounter an integral of an algebraic or transcendental function not included

here; any more comprehensive set of tables costs at least $12 or $15. Index. 2544 integrals,
xii + 154pp. 6Vs x 9V4. S225 Paperbound $2.00

SUMMATION OF SERIES, Collected by L. B. W. Jolley. Over 1100 common series collected,

summed, and grouped for easy reference for mathematicians, physicists, computer techni

cians, engineers, and students. Arranged for convenience into categories, such as arith

metical and geometrical progressions, powers and products of natural numbers, figurate and

polygonal numbers, inverse natural numbers, exponential and logarithmic series, binomial

expansions, simple inverse products, factorials, and trigonometric and hyperbolic expansions.
Also included are series representing various Bessel functions, elliptic integrals; discussions
of special series involving Legendre polynomials, the zeta function, Bernoulli s function,
and similar expressions. Revised, enlarged second edition. New preface, xii + 251pp. 5%
x 8V2. S23 Paperbound $2.25

A TABLE OF THE INCOMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND, R. G. Selfridge, J. E.

Maxfield. The first complete 6-place tables of values of the incomplete integral of the third

kind, prepared under the auspices of the Research Department of the U.S. Naval Ordnance
Test Station. Calculated on an IBM type 704 calculator and thoroughly verified by echo-

checking and a check integral at the completion of each value of a. Of inestimable value
in problems where the surface area of geometrical bodies can only be expressed in terms
of the incomplete integral of the third and lower kinds; problems in aero-, fluid-, and
thermodynamics involving processes where nonsymmetrical repetitive volumes must be
determined; various types of seismological problems; problems of magnetic potentials due to

circular current; etc. Foreword. Acknowledgment. Introduction. Use of table, xiv + 805pp.
5% x 83/a. S501 Clothbound $7.50

PRACTICAL ANALYSIS, GRAPHICAL AND NUMERICAL METHODS, F. A. Willers. Translated by
R. T. Beyer. Immensely practical handbook for engineers, showing how to interpolate, use
various methods of numerical differentiation and integration, determine the roots of a single
algebraic equation, system of linear equations, use empirical formulas, integrate differential

equations, etc. Hundreds of shortcuts for arriving at numerical solutions. Special section on
American calculating machines, by T. W. Simpson. 132 illustrations. 422pp. 5% x 8.

S273 Paperbound $2.75

NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS, A. A. Bennett, W. E. Milne, H.
Bateman. Replication of original monograph prepared for National Research Council. New
methods of integtation of differential equations developed by 3 leading mathematicians: THE
INTERPOLATIONAL POLYNOMIAL and SUCCESSIVE APPROXIMATIONS by A. A. Bennett; STEP-BY-
STEP METHODS OF INTEGRATION by W. W. Milne; METHODS FOR PARTIAL DIFFERENTIAL
EQUATIONS by H. Bateman. Methods for partial differential equations, transition from differ

ence equations to differential equations, solution of differential equations to non-integral
values of a parameter will interest mathematicians and physicists. 288 footnotes, mostly
bibliographic; 235-item classified bibliography. 108pp. 5% x 8. S305 Paperbound $1.35

INTRODUCTION TO RELAXATION METHODS, F. S. Shaw. Fluid mechanics, design of electrical

networks, forces in structural frameworks, stress distribution, buckling, etc. Solve linear
simultaneous equations, linear ordinary differential equations, partial differential equations,
Eigen-value problems by relaxation methods. Detailed examples throughout. Special tables
for dealing with awkwardly-shaped boundaries. Indexes. 253 diagrams. 72 tables. 400pp.
5% x 8. S244 Paperbound $2.45

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS, H. Levy & E. A. Baggott. Comprehensive
collection of methods for solving ordinary differential equations of first and higher order.
All must pass 2 requirements: easy to grasp and practical, more rapid than school methods.
Partial contents: graphical integration of differential equations, graphical methods for de
tailed solution. Numerical solution. Simultaneous equations and equations of 2nd and higher
orders. &quot;Should be in the hands of all in research in applied mathematics, teaching,&quot;

NATURE. 21 figures, viii + 238pp. 53/8 x 8. S168 Paperbound $1.85
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Probability theory and information theory

AN ELEMENTARY INTRODUCTION TO THE THEORY OF PROBABILITY, B. V. Gnedenko and A. Ya.

Khinchin. Translated by Leo F. Boron. A clear, compact introduction designed to equip the

reader with a fundamental grasp of the theory of probability. It is thorough and authori

tative within its purposely restricted range, yet the layman with a background in elementary
mathematics will be able to follow it without difficulty. Covers such topics as the processes
involved in the calculation of probabilities, conditional probabilities and the multiplication

rule, Bayes s formula, Bernoulli s scheme and theorem, random variables and distribution

laws, and dispersion and mean deviations. New translation of fifth (revised) Russian edi

tion (1960) the only translation checked and corrected by Gnedenko. New preface for Dover

edition by B. V. Gnedenko. Index. Bibliography. Appendix: Table of values of function &amp;lt;(a).

xii + 130pp. 53/8 x 8V2. T155 Paperbound $1.50

AN INTRODUCTION TO MATHEMATICAL PROBABILITY, Julian Lowell Coolidge. A thorough intro

duction which presents the mathematical foundation of the theory of probability. A sub

stantial body of material, yet can be understood with a knowledge of only elementary cal

culus. Contains: The Scope and Meaning of Mathematical Probability; Elementary Principles

of Probability; Bernoulli s Theorem; Mean Value and Dispersion; Geometrical Probability;

Probability of Causes; Errors of Observation; Errors in Many Variables; Indirect Observations;

The Statistical Theory of Gases; and The Principles of Life Insurance. Six pages of logarithm
tables. 4 diagrams. Subject and author indices, xii + 214pp. 53/8 x 8V2.

S258 Paperbound $1.50

A GUIDE TO OPERATIONS RESEARCH, W. E. Duckworth. A brief nontechnical exposition of

techniques and theories of operational research. A good introduction for the layman; also

can provide the initiate with new understandings. No mathematical training needed, yet not

an oversimplification. Covers game theory, mathematical analysis, information theory, linear

programming, cybernetics, decision theory, etc. Also includes a discussion of the actual

organization of an operational research program and an account of the uses of such pro

grams in the oil, chemical, paper, and metallurgical industries, etc. Bibliographies at

chapter ends. Appendices. 36 figures. 145pp. 5V4 x 8Va. T1129 Clothbound $3.50

MATHEMATICAL FOUNDATIONS OF INFORMATION THEORY, A. I. Khinchin. For the first time

mathematicians, statisticians, physicists, cyberneticists, and communications engineers are

offered a complete and exact introduction to this relatively -new field. Entropy as a measure of

a finite scheme, applications to coding theory, study of sources, channels and codes,

detailed proofs of both Shannon theorems for any ergodic source and any stationary channel

with finite memory, and much more are covered. Bibliography, vu + ^4P

pape
8

rbound $1 35

SELECTED PAPERS ON NOISE AND STOCHASTIC PROCESS, edited by Prof. Nelson Wax, U. of

Illinois 6 basic papers for newcomers in the field, for those whose work involves noise

characteristJcs. Chandrasekhar, Uhlenbeck & Ornstein, Uhlenbeck & Ming, Rice, Doob. In

cluded is Kac s Chauvenet-Prize winning Random Walk. Extensive bibliography ists 200

articles, up through 1953. 21 figures. 337pp. 6Vs x 9V4 . S262 Paperbound $2.75

THEORY OF PROBABILITY, William Burnside. Synthesis, expansion of individual papers pre

sents numerous problems in classical probability, offering many original views succinctly

effectively Game theory, cards, selections from groups; geometrical probability in such

aTeas as suppositions as to probability of position of point on a .line, points on surface

of sphere, etc. Includes methods of approximation, theory of errors, direct calculation of

probabilities, etc. Index. 136pp. 53/8 x 8. S567 Paperbound $1.00

Statistics

ANALYSIS & DESIGN OF EXPERIMENTS, H. B. Mann. Offers a method for grasping the analysis

Sf variance and vahance design within a short time Partial contente: Chi-square distrib irtion

and analysis of variance distribution, matrices, quadratic forms, likelihood ration
Jests

and

tests of linear hypotheses, power of analysis, Galois fields, n &quot;-

^&quot;^

&quot;3 ^?^ &quot;Jf J JJ
estimates etc. 15pp. of useful tables, x + 195pp. 5 x 7%. S180 Paperbound $1.45
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METHODS OF STATISTICS, L. H. C. Tippett. A classic in its field, this unusually complete sys

tematic introduction to statistical methods begins at beginner s level and progresses to

advanced levels for experimenters and poll-takers in all fields of statistical research. Sup

plies fundamental knowledge of virtually all elementary methods in use today by sociologists,

psychologists, biologists, engineers, mathematicians, etc. Explains logical and mathematical

basis of each method described, with examples for each section. Covers frequency distribu

tions and measures, inference from random samples, errors in large samples, simple analysis

of variance multiple and partial regression and correlation, etc. 4th revised (.1952) edition.

16 charts. 5 significance tables. 152-item bibliography. 96 tables. 22 figures. 395pp. 6x9.
S228 Clothbound $7.50

STATISTICS MANUAL, E. L. Crow, F. A. Davis, M. W. Maxfield. Comprehensive collection of

classical, modern statistics methods, prepared under auspices of U. S. Naval Ordnance

Test Station, China Lake, Calif. Many examples from ordnance will be valuable to workers in

all fields. Emphasis is on use, with information on fiducial limits, sign tests, Chi-square

runs sensitivity, quality control, much more. &quot;Well written . . . excellent reference work,&quot;

Operations Research. Corrected edition of NAVORD Report 3360 NOTS 948. Introduction.

Appendix of 32 tables, charts. Index. Bibliography. 95 illustrations. 306pp. 53/8 x 8.

S599 Paperbound $1.75

Symbolic logic

AN INTRODUCTION TO SYMBOLIC LOGIC, Susanne K. Langer. Probably the clearest book ever

written on symbolic logic for the philosopher, general scientist and layman. It will be par

ticularly appreciated by those who have been rebuffed by other introductory works because

of insufficient mathematical training. No special knowledge of mathematics is required.

Starting with the simplest symbols and conventions, you are led to a remarkable grasp of

the Boole-Schroeder and Russell-Whitehead systems clearly and quickly. PARTIAL CONTENTS:

Study of forms, Essentials of logical structure, Generalization, Classes, The deductive system
of classes, The algebra of logic, Abstraction of interpretation, Calculus pf propositions,

Assumptions of PRINCIPIA MATHEMATICA, Logistics, Logic of the syllogism, Proofs of

theorems. &quot;One of the clearest and simplest introductions to a subject which is very much
alive The style is easy, symbolism is introduced gradually, and the intelligent non-mathe

matician should have no difficulty in following the argument,&quot; MATHEMATICS GAZETTE.

Revised, expanded second edition. Truth-value tables. 368pp. 53/8 x 8.

S164 Paperbound $1.85

A SURVEY OF SYMBOLIC LOGIC: THE CLASSIC ALGEBRA OF LOGIC, C. I. Lewis. Classic survey
of the field, comprehensive and thorough. Indicates content of major systems, alternative

methods of procedure, and relation of these to the Boole-Schroeder algebra and to one

another. Contains historical summary, as well as full proofs and applications of the classic, or

Boole-Schroeder, algebra of logic. Discusses diagrams for the logical relations of classes, the

two-valued algebra, propositional functions of two or more variables, etc. Chapters 5 and 6

of the original edition, which contained material not directly pertinent, have been omitted in

this edition at the author s request. Appendix. Bibliography. Index, viii + 352pp. 5% x 8%.
S643 Paperbound $2.35

INTRODUCTION TO SYMBOLIC LOGIC AND ITS APPLICATIONS, R. Carnap. One of the clearest,

most comprehensive, and rigorous introductions to modern symbolic logic by perhaps its

greatest living master. Symbolic languages are analyzed and one constructed. Applications
to math (symbolic representation of axiom systems for set theory, natural numbers, real

numbers, topology, Dedekind and Cantor explanations of continuity), physics (the general

analysis of concepts of determination, causality, space-time-topology, based on Einstein,),

biology (symbolic representation of an axiom system for basic concepts). &quot;A masterpiece,&quot;

Zentralblatt fiir Mathematik und ihre Grenzgebiete. Over 300 exercises. 5 figures. Bibliog

raphy. Index, xvi + 241pp. 53/8 x 8. S453 Paperbound $1.85
Clothbound $4.00

SYMBOLIC LOGIC, C. I. Lewis, C. H. Langford. Probably the most cited book in symbolic

logic, this is one of the fullest treatments of paradoxes. A wide coverage of the entire

field of symbolic logic, plus considerable material that has not appeared elsewhere. Basic

to the entire volume is the distinction between the logic of extensions and of intensions.

Considerable emphasis is placed on converse substitution, while the matrix system presents
the supposition of a variety of non-Aristotelian logics. It has especially valuable sections

on strict limitations, existence of terms, 2-valued algebra and its extension to propositional

functions, truth value systems, the matrix method, implication and deducibility, general

theory of propositions, propositions of ordinary discourse, and similar topics. &quot;Authoritative,

most valuable,&quot; TIMES, London. Bibliography. 506pp. 53/8 x 8. S170 Paperbound $2.35

THE ELEMENTS OF MATHEMATICAL LOGIC, Paul Rosenbloom. First publication in any
language. This bopk is intended for readers who are mature mathematically but have no
previous training in symbolic logic. It does not limit itself to a single system, but covers
the field as a whole. It is a development of lectures given at Lund University, Sweden, in
1948. Partial contents: Logic of classes, fundamental theorems, Boolean algebra, logic of
propositions, logic of propositional functions, expressive languages, combinatory logics,
development of mathematics within an object language, paradoxes, theorems of Post and
Goedel, Church s theorem, and similar topics, iv + 214pp. 53/8 x 8. S227 Paperbound $1.45
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PHILOSOPHY OF SCIENCE AND MATHEMATICS

FOUNDATIONS OF SCIENCE: THE PHILOSOPHY OF THEORY AND EXPERIMENT, N. R. CampbellA critique of the most fundamental concepts of science in general and physics in particular
Examines why certain propositions are accepted without question, demarcates science from
philosophy, clarifies the understanding of the tools of science. Part One analyzes the pre
suppositions of scientific thought: existence of the material world, nature of scientific
laws, multiplication of probabilities, etc.: Part Two covers the nature of experiment and the
application of mathematics: conditions for measurement, relations between numerical laws
and theories, laws of error, etc. An appendix covers problems arising from relativity, force
motion, space, and time. A classic in its field. Index, xiii + 565pp. SS/B x 83/8 .

S372 Paperbound $2.95

THE NATURE OF PHYSICAL THEORY, P. W. Bridgman. Here is how modern physics looks to a
highly unorthodox physicist a Nobel laureate. Pointing out many absurdities of science, and
demonstrating the inadequacies of various physical theories, Dr. Bridgman weighs and ana
lyzes the contributions of Einstein, Bohr, Newton, Heisenberg, and many others. This is a
non-technical consideration of the correlation of science and reality. Index, xi + 138pp5% x 8 - S33 Paperbound $1.25

THE VALUE OF SCIENCE, Henri Poincare&quot;. Many of the most mature ideas of the &quot;last scientific
universalist&quot; covered with charm and vigor for both the beginning student and the advanced
worker. Discusses the nature of scientific truth, whether order is innate in the universe
or imposed upon it by man, logical thought versus intuition (relating to math, through the
works of Weierstrass, Lie, Klein, Riemann), time and space (relativity, psychological time
simultaneity), Hertz s concept of force, interrelationship of mathematical physics to pure
math, values within disciplines of Maxwell, Carnot, Mayer, Newton, Lorentz, etc. Index,
ni + 147pp. 53/e x 8. S469 Paperbound $1.35

SCIENCE AND HYPOTHESIS, Henri PoincarS. Creative psychology in science. How such con
cepts as number, magnitude, space, force, classical mechanics were developed, and how the
modern scientist uses them in his thought. Hypothesis in physics, theories of modern
physics. Introduction by Sir James Larmor. &quot;Few mathematicians have had the breadth of

yilon SLPomcar6
&amp;gt;

ar&quot;d none is his superior in the gift of clear exposition,&quot; E. T. Bell.
Index. 272pp. 53/8 x 8. S221 Paperbound $1.35

PHILOSOPHY AND THE PHYSICISTS, L. S. Stebbing. The philosophical aspects of modern
science examined in terms of a lively critical attack on the ideas of Jeans and Eddington.
Discusses the task of science, causality, determinism, probability, consciousness, the relation
of the world of physics to that of everyday experience. Probes the philosophical significance
of the Planck-Bohr C9ncept of discontinuous energy levels, the inferences to be drawn from
Heisenberg s Uncertainty Principle, the implications of &quot;becoming&quot; involved in the 2nd law
of thermodynamics, and other problems posed by the discarding of Laplacean determinism.
285pp. 53/8 x 8. T480 Paperbound $1.65

THE PHILOSOPHICAL WRITINGS OF PEIRCE, edited by Justus Buchler. (Formerly published as
THE PHILOSOPHY OF PEIRCE.) This is a carefully balanced exposition of Peirce s complete
system, written by Peirce himself. It covers such matters as scientific method, pure chance
vs. law, symbolic logic, theory of signs, pragmatism, experiment, and other topics. Intro
duction by Justus Buchler, Columbia University, xvi + 368pp. 53/8 k 8.

T217 Paperbound $2.00

LANGUAGE, TRUTH AND LOGIC, A. Ayer. A clear introduction to the Vienna and Cambridge
schools of Logical Positivism. It sets up specific tests by which you can evaluate validity of

ideas, etc. Contents: Function of philosophy, elimination of metaphysics, nature of analysis,
a priori, truth and probability, etc. 10th printing. &quot;I should like to have written it myself,&quot;

Bertrand Russell. Index. 160pp. 53/8 x 8. T10 Paperbound $1.25

MATHEMATICS AND SCIENCE: LAST ESSAYS (DERNIERES PENSEES), Henri Poincare. Translated
by J. W. Bolduc. A posthumous volume of articles and lectures by the great French mathe
matician, philosopher, scientist. Here are nine pieces, never before translated into English,
on such subjects as The Evolution of Laws, Space and Time, Space and 3 Dimensions, The
Logic of infinity in Mathematics (discussing Russell s theory of types), Mathematics and Logic,
The Quantum Theory and its Modern Applications, Relationship Between Matter and Ether,
Ethics and Science and The Moral Alliance. First English translation of Dernieres Pensees.
New index, viii + 128pp. 53/8 x 8V2. S1101 Paperbound $1.25

THE PSYCHOLOGY OF INVENTION IN THE MATHEMATICAL FIELD, J. Hadamard. Where do ideas
come from? What role does the unconscious play? Are ideas best developed by mathematical
reasoning, word reasoning, visualization? What are the methods used by Einstein, Poincar6,
Galton, Riemann? How can these techniques be applied by others? Hadamard, one of the
world s leading mathematicians, discusses these and other questions, xiii + 145pp. 5 3/a x 8.

T107 Paperbound $1.25
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EXPERIMENT AND THEORY IN PHYSICS, Max Born. A Nobel laureate examines the nature and

value of the counterclaims of experiment and theory in physics. Synthetic versus analytical

scientific advances are analyzed in the work of Einstein, Bohr, Heisenberg, Planck, Eddington,

Milne, and others by a fellow participant. 44pp. 53/8 x 8. S308 Paperbound 75$

THE PHILOSOPHY OF SPACE AND TIME, H. Reichenbach. An important landmark in the develop
ment of the empiricist conception of geometry, covering the problem of the fpundations of

geometry, the theory of time, the consequences of Einstein s relativity, including: relations

between theory and observations; coordinate and metrical properties of space; the psycholog
ical problem of visual intuition of non-Euclidean structures; and many other important topics
in modern science and philosophy. The majority of ideas require only a knowledge of inter

mediate math. Introduction by R. Carnap. 49 figures. Index, xviii + 296pp. 5% x 8.

S443 Paperbound $2.00

OBSERVATION AND INTERPRETATION IN THE PHILOSOPHY OF PHYSICS: WITH SPECIAL REFER
ENCE TO QUANTUM MECHANICS, Edited by S. Kbrner. A collection of papers by philosophers
and physicists arising out of a symposium held at Bristol, England in 1957 under the auspices
of the Colston Research Society. One of the most important contributions to the philosophy
of science in recent years. The discussions center around the adequacy or inadequacy of

quantum mechanics in its orthodox formulations. Among the contributors are A. J. Ayer,
D. Bohm, K. Popper, F. Bopp, S. Korner, J. P. Vigier, M. Polanyi, P. K. Feyerabend, W. C.

Kneale. W. B. Gallie, G. Ryle, Sir Charles Darwin, and R. B. Braithwaite. xiv + 218pp.
53/8 x 8V2. S131 Paperbound $1.60

SPACE AND TIME IN CONTEMPORARY PHYSICS: AN INTRODUCTION TO THE THEORY OF RELA
TIVITY AND GRAVITATION, Moritz Schlick. Exposition of the theory of relativity by the
leader of the famed &quot;Vienna Circle.&quot; Its essential purpose is to describe the physical
doctrines of special and general relativity with particular reference to their philosophical
significance. Explanations of such topics as the geometrical relativity of space, the con
nection with inertia and gravitation, the measure-determination of the space-time continuum,
the finite universe, etc., with their philosophical ramifications. Index, xii + 89pp. 5% x 8V2.

T1008 Paperbound $1.00

SUBSTANCE AND FUNCTION, & EINSTEIN S THEORY OF RELATIVITY, Ernst Cassirer. Two books
bound as one. Cassirer establishes a philosophy of the exact sciences that takes into con
sideration newer developments in mathematics, and also shows historical connections. Partial

contents: Aristotelian logic, Mill s analysis, Helmhqltz & Kronecker, Russell & cardinal num
bers, Euclidean vs. non-Euclidean geometry, Einstein s relativity. Bibliography. Index, xxi +
465pp. 53/e x 8. T50 Paperbound $2.25

PRINCIPLES OF MECHANICS, Heinrich Hertz. This last work by the great 19th century
physicist is not only a classic, but of great interest in the logic of science. Creating a new
system of mechanics based upon space, time, and mass, it returns to axiomatic analysis,
to understanding of the formal or structural aspects of science, taking into account logic,

observation, and a priori elements. Of great historical importance to Poincar6, Carnap, Ein

stein, Milne. A 20-page introduction by K. S. Cohen, Wesleyan University, analyzes the impli
cations of Hertz s thought and the logic of science. Bibliography. 13-page introduction by
Helmholtz. xlii + 274pp. 53/8 x 8. S316 Clothbound $3.50

S317 Paperbound $1.85

THE ANALYSIS OF MATTER, Bertrand Russell. How do our senses concord with the new
physics? This volume covers such topics as logical analysis of physics, prerelatiyity physics,
causality, scientific inference, physics and perception, special and general relativity, Weyl s

theory, tensors, invariants and their physical interpretation, periodicity and qualitative series.

&quot;The most thorough treatment of the subject that has yet been published,&quot; THE NATION.
Introduction by L. E. Denonn. 422pp. 5% x 8. T231 Paperbound $1.95

FOUNDATIONS OF GEOMETRY, Bertrand Russell. Analyzing basic problems in the overlap area
between mathematics and philosophy, Nobel laureate Russell examines the nature of geo
metrical knowledge, the nature of geometry, and the application of geometry to space.
It covers the history of non-Euclidean geometry, philosophic interpretations of geometry
especially Kant projective and metrical geometry. This is most interesting as the solution
offered in 1897 by a great mind to a problem still current. New introduction by Prof. Morris
Kline of N. Y. University, xii + 201pp. 53/8 x 8. S232 Clothbound $3.25

S233 Paperbound $1.75

IDENTITY AND REALITY, Emile Meyerson. Called by Einstein a &quot;brilliant study in the theory
of knowledge,&quot; this book by the renowned Franco-German thinker is a major treatise in
the philosophy of science and epistemology. Thorough, critical inquiries into causality, scien
tific laws, conservation of matter and energy, the unity of. matter, Carnot s principle, the
irrational, the elimination of time. Searches out the solutions of epistemological questions
that form the bases of the scientific method. Authorized translation by Kate Loewenberg.
Author s prefaces. Editor s preface. Appendices. Index. 495pp. 5 3/s x 8V2.

T65 Paperbound $2.25

ESSAYS IN EXPERIMENTAL LOGIC, John Dewey. This stimulating series of essays touches upon
the relationship between inquiry and experience, dependence of knowledge upon thought,
character of logic; judgments of practice, data and meanings, stimuli of thought, etc. Index,
viii + 444pp. 53/8 x 8. T73 Paperbound $2.25
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MATHEMATICS, HISTORIES AND CLASSICS

HISTORY OF MATHEMATICS, D. E. Smith. Most comprehensive non-technical history of math
in English. Discusses lives and works of over a thousand major and minor figures, with
footnotes supplying technical information outside the book s scheme, and indicating dis
puted matters. Vol I: A chronological examination, from primitive concepts through Egypt
Babylonia, Greece, the Orient, Rome, the Middle Ages, the Renaissance, and up to 1900

?

Vol 2: The development of ideas in specific fields and problems, up through elementary
calculus. Two volumes, total of 510 illustrations, 1355pp. 5% x 8. Set boxed in attractive
container. T429, 430 Paperbound, the set $6.00

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. R. Ball. Most readable non
technical history of mathematics treats lives, discoveries of every important figure from
Egyptian, Phoenician mathematicians to late 19th century. Discusses schools of Ionia

Pythagoras, Athens, Cyzicus, Alexandria, Byzantium, systems of numeration; primitive arith
metic; Middle Ages, Renaissance, including Arabs, Bacon, Regiomontanus, Tartaglia, Cardan,
Stevinus, Galileo, Kepler; modern mathematics of Descartes, Pascal, Wallis, Huygens, Newton,
Leibnitz, d Alembert, Euler, Lambert, Laplace, Legendre, Gauss, Hermite, Weierstrass,
scores more. Index. 25 figures. 546pp. 5% x 8. S630 Paperbound $2.25

A HISTORY OF GEOMETRICAL METHODS, J. L. Coolidge. Full, authoritative history of the tech
niques which men have employed in dealing with geometric questions . . . from ancient
times to the modern development of projective geometry. Critical analyses of the original
works. Contents: Synthetic Geometry the early beginnings, Greek mathematics, non-Euclidean
geometries, projective and descriptive geometry; Algebraic Geometry extension of the system
of linear coordinates, other systems of point coordinates, enumerative and birational geometry,
etc.; and Differential Geometry intrinsic geometry and moving axes, Gauss and the classical
theory of surfaces, and projective and absolute differential geometry. The work of scores of

geometers analyzed: Pythagoras, Archimedes, Newton, Descartes, Leibniz, Lobachevski, Riemann,
Hilbert, Bernoulli, Schubert, Grassman, Klein, Cauchy, and many, many others. Extensive (24-
page) bibliography. Index. 13 figures, xviii + 451pp. 5% x 8Vfe. S1006 Paperbound $2.25

THE MATHEMATICS OF GREAT AMATEURS, Julian Lowell Coolidge. Enlightening, often surprising,
accounts of what can result from a non-professional preoccupation with mathematics. Chapters
on Plato, Omar Khayyam and his work with cubic equations, Piero della Francesca, Albrecht

Durer, as the true discoverer of descriptive geometry, Leonardo da Vinci and his varied mathe
matical interests, John Napier, Baron 9f Merchiston, inventor of logarithms, Pascal, Diderot,
I Hospital, and seven others known primarily for contributions in other fields. Bibliography.
56 figures, viii + 211pp. 53/8 x 8V2. S1009 Paperbound $1.50

ART AND GEOMETRY, Wm. M. Ivins, Jr. A controversial study which propounds the view that

the ideas of Greek philosophy and culture served not to stimulate, but to stifle the develop
ment of Western thought. Through an examination of Greek art and geometrical inquiries
and Renaissance experiments, this book offers a concise history of the evolution of mathe
matical perspective and projective geometry. Discusses the work of Alberti, Durer, Pelerin,
Nicholas of Cusa, Kepler, Desargues, etc. in a wholly readable text of interest to the art

historian, philosopher, mathematician, historian of science, and others, x + 113pp. 5% x

83/a. T941 Paperbound $1.25

A SOURCE BOOK IN MATHEMATICS, D. E. Smith. Great discoveries in math, from Renaissance

to end of 19th century, in English translation. Read announcements by Dedekind, Gauss,

Delamain, Pascal, Ferrnat, Newton, Abel, Lobachevsky, Bolyai, Rjemann, De Moivre, Legendre,

Laplace, others of discoveries about imaginary numbers, number congruence, slide rule,

equations, symbolism, cubic algebraic equations, non-Euclidean forms of geometry, calculus,
function theory, quaternions, etc. Succinct selections from 125 different treatises, articles,

most unavailable elsewhere in English. Each article preceded by biographical, historical

introduction. Vol. I: Fields of Number, Algebra. Index. 32 illus. 338pp. 5% x 8. Vol. II:

Fields of Geometry, Probability, Calculus, Functions, Quaternions. 83 illus. 432pp. 5% x 8.

Vol. 1: S552 Paperbound $2.00
Vol. 2: S553 Paperbound $2.00

2 vol. set, $4.00

A COLLECTION OF MODERN MATHEMATICAL CLASSICS, edited by R. Bellman. 13 classic papers,
complete in their original languages, by Hermite, Hardy and Littlewood, Tchebychef, Fej6r,

Fredholm, Fuchs, Hurwitz, Weyl, van der Pol, Birkhoff, Kellogg, von Neumann, and Hilbert.

Each of these papers, collected here for the first time, triggered a burst of mathematical

activity, providing useful new generalizations or stimulating fresh investigations. Topics dis

cussed include classical analysis, periodic and almost periodic functions, analysis and number
theory, integral equations, theory of approximation, non-linear differential equations, and
functional analysis. Brief introductions and bibliographies to each paper, xii + 292pp. 6x9.

S730 Paperbound $2.00

THE WORKS OF ARCHIMEDES, edited by T. L. Heath. All the known works of the great Greek
mathematician are contained in this one volume, including the recently discovered Method
of Archimedes. Contains: On Sphere & Cylinder, Measurement of a Circle, Spirals, Conoids,

Spheroids, etc. This is the definitive edition of the greatest mathematical intellect of the

ancient world. 186-page study by Heath discusses Archimedes and the history of Greek
mathematics. Bibliography. 563pp. 53/a x 8. S9 Paperbound $2.45



Catalogue of Dover Books

THE THIRTEEN BOOKS OF EUCLID S ELEMENTS, edited by Sir Thomas Heath. Definitive edition

of one of the very greatest classics of Western world. Complete English translation of

Heiberg text, together with spurious Book XIV. Detailed 150-page introduction discussing
aspects of Greek and Medieval mathematics. Euclid, texts, commentators, etc. Paralleling
the text is an elaborate critical apparatus analyzing each definition, proposition, postulate,

covering textual matters, mathematical analysis, commentators of all times, refutations, sup
ports, extrapolations, etc. This is the full Euclid. Unabridged reproduction of Cambridge U.

2nd edition. 3 volumes. Total of 995 figures, 1426pp. 5% x 8.

888,89,90, 3 volume set, paperbound $7.50

A CONCISE HISTORY OF MATHEMATICS, D. Struik. Lucid study of development of mathematical
ideas, techniques from Ancient Near East, Greece, Islamic science, Middle Ages, Renaissance,
modern times. Important mathematicians are described in detail. Treatment is not anecdotal,
but analytical development of ideas. &quot;Rich in content, thoughtful in interpretation,&quot; U.S.

QUARTERLY BOOKLIST. Non-technical; no mathematical training needed. Index. 60 illustra

tions, including Egyptian papyri, Greek mss., portraits of 31 eminent mathematicians. Bib

liography. 2nd edition, xix + 299pp. 53/s x 8. T255 Paperbound $1.75

A HISTORY OF THE CALCULUS, AND ITS CONCEPTUAL DEVELOPMENT, Carl B. Boyer. Pro
vides laymen and mathematicians a detailed history of the development, of the calculus,
from early beginning in antiquity to final elaboration as mathematical abstractions. Gives
a sense of mathematics not as a technique, but as a habit of mind, in the progression of
ideas of Zeno, Plato, Pythagoras, Eudoxus, Arabic and Scholastic mathematicians, Newton,
Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weierstrass, and others. This first com
prehensive critical history of the calculus was originally titled &quot;The Concepts of the
Calculus.&quot; Foreword by R. Courant. Preface. 22 figures. 25-page bibliography. Index, v -f

364pp. 53/8 x 8. S509 Paperbound $2.00

A MANUAL OF GREEK MATHEMATICS, Sir Thomas L. Heath. A non-technical survey of Greek
mathematics addressed to high school and college students and the layman who desires a sense
of historical perspective in mathematics. Thorough exposition of early numerical notation and
practical calculation, Pythagorean arithmetic and geometry, Thales and the earliest Greek
geometrical measurements and theorems, the mathematical theories of Plato, Euclid s &quot;Ele

ments&quot; and his other works (extensive discussion), Aristarchus, Archimedes, Eratosthenes and
the measurement of the earth, trigonometry (Hipparchus, Menelaus, Ptolemy), Pappus and

sd frcHeron of Alexandria, and detailed coverage of minor figures normally omitted from histories
36. Presented in a refreshingly interesting and readable style. Appendix. 2 Indexes,
pp. 53/8 x 8. S279 Paperbound $2.25

THE GEOMETRY OF REN DESCARTES. With this book Descartes founded analytical geometry.
Excellent Smith-Latham translation, plus original French text with Descartes own diagrams.
Contains Problems the Construction of Which Requires Only Straight Lines and Circles; On
the Nature of Curved Lines; On the Construction of Solid or Supersolid Problems. Notes.

Diagrams. 258pp. 53/8 x 8. S68 Paperbound $2.00

A PHILOSOPHICAL ESSAY ON PROBABILITIES, Marquis de Laplace. This famous essay explains
without recourse to mathematics the principle of probability, and the application of prob

ability to games of chance, natural philosophy, astronomy, many other fields. Translated

from the 6th French edition by F. W. Truscott, F. L. Emory, with new introduction for this

edition by E. T. Bell. 204pp. 53/8 x 8. S166 Paperbound $1.35

Prices subject to change without notice.

Dover publishes books on art, music, philosophy, literature, languages,

history, social sciences, psychology, handcrafts, orientalia, puzzles and

entertainments, chess, pets and gardens, books explaining science, inter

mediate and higher mathematics, mathematical physics, engineering,

biological sciences, earth sciences, classics of science, etc. Write to :

Dept. catrr.

Dover Publications, Inc.

180 Varick Street, N.Y. 14, N. Y.
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